We report on the interactions of an incident 200 GeV / c beam composed of 33% protons, 16% kaons, and 48% pions on targets of silver and gold mounted in the Fermilab 30″ bubble chamber. Within our limited statistics, we find the total cross sections and average multiplicities to agree with previously published data. We find the KNO scaling distribution curve to be broader for heavy nuclei than for hydrogen. We present the first data for V 0 production on gold and silver. We also present, for the first time, evidence for a positive charge excess among the sample of relativistic tracks from interactions on gold and silver. We observe a trend where the positive charge excess increases with target atomic number and with increasing charged particle multiplicity. We find the charge excess to exist among the sample of particles having greater than 2 GeV / c momentum and to persist in the sample with momentum greater than 4 GeV / c .
SIG REFERS PRODUCTION OF 2 OR MORE CHARGED PARTICLES EXCLUDING ELASTICS BUT INCLUDING COHERENT PRODUCTION. MULT REFERS TO RELATIVISTIC SECONDARIES (BETA > 0.7).
NO CORRECTION FOR GAMMA CONVERSIONS IN THE TARGET IN THIS TABLE BUT DIFFERENCE DOES NOT NEED CORRECTION.
No description provided.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
No description provided.
No description provided.
No description provided.
We present the multiplicity distributions of the hadrons produced in antineutrinoproton interactions. The data sample, which consists of 2025 charged-current events with antineutrino energy greater than 5 GeV, comes from exposures of the 15-foot hydrogen bubble chamber to the broad-band antineutrino beam at Fermilab. The distribution in hadronic mass W has an average value of 3.7 GeV but extends up to 10 GeV. The mean multiplicity of charged hadrons depends on the hadronic mass W and varies as 〈nch〉=(−0.44±0.13)+(1.48±0.06)lnW2 for W2>4 GeV2. The mean multiplicities for events with three or more charged tracks averaged over the total data sample are 〈n−〉=1.68±0.03 and 〈n0〉=1.11±0.07 for π− and π0 production, respectively. The mean π0 multiplicity is found to increase slowly with n−. The integrated correlation coefficient f2−− and the dispersion D− are given as a function of n−. When compared to the distributions characteristic of other leptonic and hadronic reactions, we find a similarity between the ν¯ data and results from hadronic reactions that have no diffractive component. Multiplicity data for the heavier particles K0, ρ0, and Λ are also summarized. The pion multiplicities in the current fragmentation region exceed those for the target fragmentation at all W values. They also satisfy the isospin relation 2〈n0〉=〈n+〉+〈n−〉 required for the fragmentation of an I=12 quark when a W>4 GeV selection is imposed.
No description provided.
No description provided.
No description provided.
Multiplicity distributions and correlations between charged particles in the forward and back-ward c.m. hemispheres are studied inK−p interactions at 110 GeV/c and compared with other data on mesonnucleon scattering. The interpretation in terms of a simple quark-parton picture assuming that the forward multiplicity is dominated by quark fragmentation and the backward multiplicity by diquark fragmentation is supported by the experimental fact that the forward and the backward mean multiplicities are approximately equal to half of thee+e− andpp multiplicities, respectively. The 110 GeV/cK−p data show significant correlations between the numbers of slow forward and slow backward particles, whereas the multiplicities of fast forward and fast backward particles are independent.
CHARGED MULTIPLICITY PER INELASTIC EVENT.
NONDIFFRACTIVE SAMPLE ( -0.85 < XL < 0.85 ). CHARGED MULTIPLICITY PER INELASTIC EVENT.
Charged hadron production ine+e− annihilation is studied in the 7 to 10 GeV CM energy region and at the Υ (9.46) and Υ′ (10.01) resonances with the LENA detector at DORIS. The statistical moments of the charged multiplicities are studied. The data show KNO scaling behaviour and suggest the presence of long range correlations. An average charged multiplicityrise of Δn(Υ)=0.55±0.19 and Δn(Υ′)=1.26±0.29 over the continuum is observed for the Υ and Υ′ direct decays. The jet structure of the Υ and Υ′ direct decays is investigated using the charged particles. The polar angular distributions of the jet axis behave like 1+α(T) cos2θ with 〈α(T)〉Υ=0.7±0.3 and 〈α(T)〉Υ′=0.6±0.4. The 〈α(T)〉Υ value is in agreement with the QCD vector gluon assignment and excludes scalar gluons by more than four standard deviations.
No description provided.
No description provided.
No description provided.
The energy dependence of the average of the charged multiplicity and its dispersion in π + /K + /p interaction on protons at 147 GeV/ c is found to be the same as in e + e − annihilations if an “effective energy” variable is used instead of the total energy. The effective energy S eff is defined as the invariant mass of all secondaries left after the two leading particles have been removed. Fitting the expression aS eff b to the average charge multiplicity 〈 n ch 〉, we find the power b to be in good agreement with the value of 0.25 predicted by Fermi's statistical model and by Landau's hydrodynamical model.
BINS IN WEFF SELECTED SO AS TO YIELD 200 EVENTS IN EACH BIN.
200 EVENTS IN EACH BIN IN WEFF.
50 EVENTS IN EACH BIN IN WEFF.
None
No description provided.
No description provided.
No description provided.
Measurements of the charged multiplicities for hadron production in e + e − annihilation in the center of mass energy range 9–32 GeV have been made. The average charged multiplicity has an energy dependence much stronger than ln s and similar to that reported for pp collisions. Quantitative differences are observed in the magnitude of both the average multiplicity 〈 n ch 〉 and the dispersion D ch for e + e − and pp interactions at the same center of mass energy. 〈 n ch 〉 and the ratio 〈 n ch / D ch in e + e − annihilations are significantly larger than in pp collisions and are found to be in overall agreement with QCD predictions. KNO scaling is seen to be satisfied.
THE FINAL TABLE ENTRY COMBINES THE DATA FROM THE THREE HIGHEST ENERGY BINS.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.