We study the lepton forward-backward asymmetry AFB and the longitudinal K* polarization FL, as well as an observable P2 derived from them, in the rare decays B->K*l+l-, where l+l- is either e+e- or mu+mu-, using the full sample of 471 million BBbar events collected at the Upsilon(4S) resonance with the Babar detector at the PEP-II e+e- collider. We separately fit and report results for the B+->K*+l+l- and B0->K*0l+l- final states, as well as their combination B->K*l+l-, in five disjoint dilepton mass-squared bins. An angular analysis of B+->K*+l+l- decays is presented here for the first time.
$F_L$ angular fit results.
$A_{FB}$ angular fit results.
$P_2$ results with total uncertainties.
Inclusive measurements of the pion differential cross sections and analyzing powers have been carried out for the pp→pnπ+ reaction at 420 and 500 MeV using the SASP spectrometer at TRIUMF. Pion energies from the onset of the continuum down to about 25 MeV were covered in the angular range from 23° to 100° (lab). Total cross sections of 0.750±0.075 mb and 2.77±0.28 mb were determined for the pp→pnπ+ reaction at 420 and 500 MeV, respectively. The experimental results are presented and discussed within the framework of a partial wave analysis. Theoretical predictions from a covariant one-boson-exchange model that includes final state interactions, provide a good description of the data. The pion spectra, in the region corresponding to low relative np energies, are also well described by a final state interaction model that uses the pp→dπ+ cross sections as input. Details of the determination of the background corrections and detector efficiencies will be discussed.
No description provided.
Only statistical errors are given.
Only statistical errors are given.
In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons,
Charge conjugate states are included.
A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.
No description provided.
Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
The polarization parameter Pn000, the two-spin parameters Dn0n0, Kn00n, Ds′0s0, Ds′0k0 and the three-spin parameters Ms′0sn and Ms′0kn have been measured for pp elastic scattering angles between 60° and 88° center of mass at 241 and 314 MeV incident kinetic energies, and between 38° c.m. and 98° c.m. at 341, 366, and 398 MeV. At 473 MeV, only Pn000 and Ds′0k0 were measured between 34° c.m. and 62° c.m. The experiment was performed at SIN using a polarized proton beam and a polarized butanol target. The polarization of the scattered proton was analyzed in a carbon polarimeter. The influence of these high-precision data on the Saclay-Geneva phase-shift analysis is discussed.
Statistical errors only.
Statistical errors only.
Statistical errors only.
The spin correlation parameters A oosk and A ookk were measured at 0.834 and 0.995 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements were carried out in the angular region φ CM from 50° to ≃ 90°. The shape of the angular distribution A oosk (pp) = f ( θ CM ) changes rapidly from 0.8 to 1.0 GeV. The A ookk data points specify our previous measurements.
No description provided.
No description provided.
No description provided.
The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
The asymmetry in the scattering of π− mesons by polarized protons has been measured at 50 different momenta from 0.643 to 2.14 GeV/c. Results were obtained at values of cosθ ranging from approximately +0.9 to -0.95 in the c.m. system at each incident pion momentum. The pion beam was incident on a 7.6-cm-long crystal assembly of lanthanum magnesium nitrate, in which the hydrogen in the water of crystallization was polarized by the "solid effect." The total momentum spread of the beam was 10% (full width at half-height) and data were collected simultaneously in 4 momentum channels, each with 2½% full width at half-height. A gas Čherenkov counter was used to reject incoming electrons. Scattered particles were detected in scintillation counter arrays placed within the 10-cm gap of the polarized target magnet. Encoded information from each array was stored in the memory of a PDP-5 computer connected on-line to a fast electronic logic network. The computer was programmed to classify the events according to momentum and scattering angle and subdivide them into coplanar and noncoplanar categories. The latter provided a measure of the background. The results have been expressed in the form of an expansion in terms of first associated Legendre polynomial series and compared with the predictions of recent phase-shift solutions. It is concluded that although these analyses give satisfactory predictions of the general features of the results, no one solution gives complete agreement with the data above about 1.0 GeV/c.
No description provided.
No description provided.
No description provided.
Final results are presented of the proton-proton elastic-scattering spin parameters CSS=(S,S;0,0) and CLS=(L,S;0,0) for thetac.m.=8°–49° and of CLL=(L,L;0,0) for thetac.m.=8°–90° at 11.75 GeV/c. Comparisons to theoretical models are also made.
No description provided.