Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.
$v_1$ ($p_T$) for charged hadrons measured with respect to the Cu spectator neutrons at midrapidity in Cu + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.
$v_2(p_T)$ for charged hadrons measured at midrapidity in Cu + Au collisions at $\sqrt{S_N{N}}$ = 200 GeV.
$v_3(p_T)$ for charged hadrons measured at midrapidity in Cu + Au collisions at $\sqrt{S_N{N}}$ = 200 GeV.
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.
Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.
Centrality parameters $N_{part}$ and $N_{coll}$ in U+U and Au+Au collisions, estimated using the Glauber model.
The nuclear-modification factor, $R_{AA}$, measured as a function of collision centrality ($N_{part}$) for $J/\psi$ at forward rapidity in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV.
Invariant yield measured as a function of collision centrality for $J/\psi$ at forward rapidity for U+U and Au+Au collisions.
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.
Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.
We report on $J/\psi$ production from asymmetric Cu+Au heavy-ion collisions at $\sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/\psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/\psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.
Nuclear modification factor ($R_{AA}$) at forward (1.2<$y$<2.2 Cu-going) and backward (-2.2<$y$<-1.2 Au-going) rapidity and forward/backward ratio as a function of centrality (%).
Longitudinal density correlations of produced matter in Au+Au collisions at sqrt(s_NN)=200 GeV have been measured from the inclusive charged particle distributions as a function of pseudorapidity window sizes. The extracted \alpha \xi parameter, related to the susceptibility of the density fluctuations in the long wavelength limit, exhibits a non-monotonic behavior as a function of the number of participant nucleons, N_part. A local maximum is seen at N_part ~ 90, with corresponding energy density based on the Bjorken picture of \epsilon_Bj \tau ~ 2.4 GeV/(fm^2 c) with a transverse area size of 60 fm^2. This behavior may suggest a critical phase boundary based on the Ginzburg-Landau framework.
Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.
Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.
Fit results based on $k(\delta_{\eta})$=$1/{{2\alpha\xi}/{\delta_{\eta}}}$ ($\xi << \delta_{\eta}$).
Inclusive transverse momentum spectra of eta mesons in the range p_T~2-12 GeV/c have been measured at mid-rapidity (|\eta| < 0,35) by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The eta mesons are reconstructed through their eta--> \gamma\gamma channel for the three colliding systems as well as through the eta-->pi^0 pi+ pi- decay mode in p+p and d+Au collisions. The nuclear modification factor in d+Au collisions, R_dAu(p_T~1.0-1.1, suggests at most only modest p_T broadening (Cronin enhancement). In central Au+Au reactions, the eta yields are significantly suppressed, with R_AuAu(pT)~0.2. The ratio of eta to pi^0 yields is approximately constant as a function of p_T for the three colliding systems in agreement with the high-p_T world average of R_eta/pi^0 \approx 0.5 in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions for a wide range of center-of-mass energies [sqrt(s_NN)~3-1800 GeV] as well as, for high scaled momentum x_p, in e+e- annihilations at sqrt(s)=91.2 GeV. These results are consistent with a scenario where high-p_T eta production in nuclear collisions at RHIC is largely unaffected by initial-state effects, but where light-quark mesons (pi^0:eta) are equally suppressed due to final-state interactions of the parent partons in the dense medium produced in Au+Au reactions.
Inelastic cross section measured in p+p at $\sqrt{s}$=200 GeV through $\eta \rightarrow \gamma \gamma$
Inelastic cross section measured in p+p at $\sqrt{s}$=200 GeV through $\eta \rightarrow \pi^{0} \pi^{+} \pi^{-}$
Inelastic cross section measured in d+Au at $\sqrt{s}$=200 GeV through $\eta \rightarrow \gamma \gamma$
Measurements of neutral pion production at midrapidity in sqrt(s_NN) = 200 GeV Au+Au collisions as a function of transverse momentum, p_T, collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi^0 results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass-energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of three increase in statistics over previously published results for p_T > 6 GeV/c. We evaluate the suppression in the yield of high-p_T pi^0's relative to point-like scaling expectations using the nuclear modification factor R_AA. We present the p_T dependence of R_AA for nine bins in collision centrality. We separately integrate R_AA over larger p_T bins to show more precisely the centrality dependence of the high-p_T suppression. We then evaluate the dependence of the high-p_T suppression on the emission angle \Delta\phi of the pions with respect to event reaction plane for 7 bins in collision centrality. We show that the yields of high-p_T pi^0's vary strongly with \Delta\phi, consistent with prior measurements. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane while the yield of pi^0's produced perpendicular to the reaction plane is suppressed by more than a factor of 2. We analyze the combined centrality and \Delta\phi dependence of the pi^0 suppression in different p_T bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigmac c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049(-0.087) (PYTHIA syst.) mb.
Differential charm cross section at forward rapidity of 1.6 An additional +0.049 -0.087 systematic uncertainty associated with the PYTHIA normalization is not included in the values given.