Date

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Version 2
Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 091, 2023.
Inspire Record 2142341 DOI 10.17182/hepdata.132906

The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The inclusive fiducial cross section is measured to be $\sigma_\mathrm{fid}$ = 73.4 $_{-5.3}^{+5.4}$ (stat) ${}_{-2.2}^{+2.4}$ (syst) fb, in agreement with the standard model expectation of 75.4 $\pm$ 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.

116 data tables

Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width

Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width

Correlation between the measured fiducial cross sections in the different bins of $p_{\mathrm{T}}^{\gamma\gamma}$

More…

Measurements of $W^{+}W^{-}$ production in decay topologies inspired by searches for electroweak supersymmetry

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 718, 2023.
Inspire Record 2103950 DOI 10.17182/hepdata.132115

This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

30 data tables

Signal region detector-level distribution for the observable $|y_{e\mu}|$.

Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.

Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.

More…

Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

34 data tables

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.

The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

More…

Measurement of long-range near-side two-particle angular correlations in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 172302, 2016.
Inspire Record 1397173 DOI 10.17182/hepdata.73192

Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 inverse nanobarns. The correlations are studied over a broad range of pseudorapidity (abs(eta) < 2.4) and over the full azimuth (phi) as a function of charged particle multiplicity and transverse momentum (pt). In high-multiplicity events, a long-range (abs(Delta eta) > 2.0), near-side (Delta phi approximately 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < pt < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity, with an overall correlation strength similar to that found in earlier pp data at sqrt(s) = 7 TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities of N[ch] approximately 180, a region so far unexplored in pp collisions. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.

38 data tables

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 0.1 $<p_{T}<$ 1.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 13 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 0.1 $<p_{T}<$ 1.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 7 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 1.0 $<p_{T}<$ 2.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 13 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

More…

Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Lett.B 708 (2012) 249-264, 2012.
Inspire Record 927105 DOI 10.17182/hepdata.58523

Angular correlations between unidentified charged trigger ($t$) and associated ($a$) particles are measured by the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV for transverse momenta $0.25 < p_{T}^{t,\, a} < 15$ GeV/$c$, where $p_{T}^t > p_{T}^a$. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval $|\eta| < 1.0$. Distributions in relative azimuth $\Delta\phi \equiv \phi^t - \phi^a$ are analyzed for $|\Delta\eta| \equiv |\eta^t - \eta^a| > 0.8$, and are referred to as "long-range correlations". Fourier components $V_{n\Delta} \equiv \langle \cos(n\Delta\phi)\rangle$ are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy $V_{n\Delta}(p_{T}^t, p_{T}^a)$ is fully described in terms of single-particle anisotropies $v_n (p_{T})$ as $V_{n\Delta}(p_{T}^t, p_{T}^a) = v_n(p_{T}^t) \, v_n(p_{T}^a)$. This expectation is tested for $1 \leq n \leq 5$ by applying a global fit of all $V_{n\Delta} (p_{T}^t, p_{T}^a)$ to obtain the best values $v_{n}\{GF\} (p_{T})$. It is found that for $2 \leq n \leq 5$, the fit agrees well with data up to $p_T^a \sim 3$-4 GeV/$c$, with a trend of increasing deviation as $p_{T}^t$ and $p_{T}^a$ are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full $0.25 < p_{T} < 15$ GeV/$c$ range using a single $v_n(p_T)$ curve; such a description is however approximately possible for $2 \leq n \leq 5$ when $p_T^a < 4$ GeV/$c$. For the $n=1$ harmonic, however, a single $v_1(p_T$ curve is not obtained even within the reduced range $p_T^a < 4$ GeV/$c$.

100 data tables

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for two centrality classes 0-2% and 2-10%. Note that in the paper the data are plotted multiplied by 100.

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for three centrality classes 10-20%, 20-30% and 40-50%. Note that in the paper the data are plotted multiplied by 100.

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 8-15 GeV and associated particles in the range 6-8 GeV for two centrality classes 40-50% and 0-20%. Note that in the paper the data are plotted multiplied by 100.

More…

Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Indications of Conical Emission of Charged Hadrons at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 052302, 2009.
Inspire Record 785050 DOI 10.17182/hepdata.102085

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.

14 data tables

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.

More…

Measurement of the hadronic photon structure function F2(gamma)(x, Q**2) in two-photon collisions at LEP

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 30 (2003) 145-158, 2003.
Inspire Record 631231 DOI 10.17182/hepdata.43218

The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between

4 data tables

Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.

Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.

Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.

More…

Study of the fragmentation of b quarks into B mesons at the Z peak.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Phys.Lett.B 512 (2001) 30-48, 2001.
Inspire Record 558327 DOI 10.17182/hepdata.48926

The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.

6 data tables

Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.

The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.

Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.

More…