The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.
The measured TOP TOPBAR production cross section.
The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.
An indirect measurement of the top-quark total decay width.
A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a $b\bar{b}$ quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at $m_H$=125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.
Summary of 95% CL upper limits on SIG*BR(HIGGS --> INVISIBLE)/SIG(SM) obtained from the VBF search, the combined ZH searches, and the combination of all three searches.
A search is presented for production of dark matter particles recoiling against a leptonically decaying Z boson in 20.3 fb$^{-1}$ of pp collisions at $\sqrt{s}$=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely-charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.
Summary of the systematic uncertainties for the largest background process (ZZ->llnunu). Statistical uncertaintes are from MC simulation sample size.
Observed yields and expected SM backgrounds in each signal region. Statistical, systematic, and luminosity uncertainteis are added in quadrature to give the total background estimate and uncertainties.
The observed and expected upper limits on the fiducial cross section at 95% C.L. for each signal region.
Measurements are presented of the t-channel single-top-quark production cross section in proton-proton collisions at sqrt(s) = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 inverse femtobarns recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop (t-bar), in final states with a muon or an electron. The measured inclusive t-channel cross section is sigma[t-ch] = 83.6 +/- 2.3 (stat.) +/- 7.4 (syst.) pb. The single t and t-bar cross sections are measured to be sigma[t-ch,t] = 53.8 +/- 1.5 (stat.) +/- 4.4 (syst.) pb and sigma[t-ch,t-bar] = 27.6 +/- 1.3 (stat.) +/- 3.7 (syst.) pb, respectively. The measured ratio of cross sections is R[t-ch] = sigma[t-ch,t]/sigma[t-ch,t-bar] = 1.95 +/- 0.10 (stat.) +/- 0.19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element Vtb is extracted and, in combination with a previous CMS result at sqrt(s) = 7 TeV, a value abs(Vtb) = 0.998 +/- 0.038 (exp.) +/- 0.016 (theo.) is obtained.
The measured inclusive single-top-quark production cross section and the separate single top-quark and top-antiquark production cross sections in the t-channel.
The ratio of the inclusive single-top-quark production cross section in the t-channel at 8 TeV to the cross section at 7 TeV.
The ratio of the top-quark production cross section in the t-channel to the top-antiquark production cross section in the t-channel.
Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.
The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.
The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.
The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at $\sqrt{s}$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $W \to e\nu, \mu\nu$ or $Z \to e^+ e^-, \mu^+ \mu^-$, or $\nu\bar{\nu})$. The results are based on data corresponding to an integrated luminosity of 18.9 inverse-femtobarns collected with the CMS detector at the Large Hadron Collider. The measured cross sections, $\sigma(pp \to WZ)$ = 30.7 $\pm$ 9.3 (stat.) $\pm$ 7.1 (syst.) $\pm$ 4.1 (th.) $\pm$ 1.0 (lum.) pb and $\sigma(pp \to ZZ)$ = 6.5 $\pm$ 1.7 (stat.) $\pm$ 1.0 (syst.) $\pm$ 0.9 (th.) $\pm$ 0.2 (lum.) pb, are consistent with next-to-leading order quantum chromodynamics calculations.
The cross section for inclusive WZ production for the mass range 60 < M(Z) < 120 GeV.
The cross section for inclusive ZZ production for the mass range 60 < M(Z) < 120 GeV.
The cross section for inclusive WZ production in the region defined by 60 < M(Z) < 120 GeV and PT(W) > 100 GeV.
A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 inverse-picobarns. The measured total inclusive cross sections times branching fractions are $\sigma(pp \to WX) \times B(W \to l\nu)$ = 12.21 +/- 0.03 (stat) +/- 0.24 (syst) +/- 0.32 (lum) nb, and $\sigma(pp \to ZX) \times B(Z \to l^{+}l^{-})$ = 1.15 +/- 0.01 (stat) +/- 0.02 (syst) +/- 0.03 (lum) nb, for the dilepton mass in the range of 60 to 120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 8 TeV.
W+ total and fiducial production cross sections times branching fractions.
W- total and fiducial production cross sections times branching fractions.
(W+ + W-) total and fiducial production cross sections times branching fractions.
The first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of 12.2 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the LHC. Events with two leptons and a jet originating from a b quark are selected. A multivariate analysis based on kinematic and topological properties is used to separate the signal from the dominant t t-bar background. An excess consistent with the signal hypothesis is observed, with a significance which corresponds to 6.1 standard deviations above a background-only hypothesis. The measured production cross section is 23.4 +- 5.4 pb, in agreement with the standard model prediction.
Measured cross section for associated production of a single top quark and a W boson, where the uncertainty is mainly systematic.
The top-antitop quark (t t-bar) production cross section is measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 inverse femtobarns. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.
The total efficiencies etotal, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective TOP TOPBAR final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured TOP TOPBAR production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.
The TOP TOPBAR cross section obtained by combining all final states.
A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns and was collected at sqrt(s) = 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.
The distribution of HT for all channels combined after the full selection except for the HT requirement itself.
Expected and observed 95% CL limits on the $\mathrm{T}_{5/3}$ production cross section times the branching fraction for decay to same-sign dileptons.
The distribution of HT for all channels combined, after the requirement of same- sign dileptons, the Z-boson veto, and a requirement of at least two jets.