Showing 10 of 34 results
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.332 GeV and W = 1.839 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.433 GeV and W = 1.889 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.534 GeV and W = 1.939 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.635 GeV and W = 1.987 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.737 GeV and W = 2.035 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.838 GeV and W = 2.081 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.939 GeV and W = 2.126 GeV.
Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.
Angular distributions of the photodisintegration cross section for angle between 10 and 50 degrees in the CM.
Angular distributions of the photodisintegration cross section for angle between 50 and 90 degrees in the CM.
Angular distributions of the photodisintegration cross section for angle between 90 and 130 degrees in the CM.
Angular distributions of the photodisintegration cross section for angle between 130 and 160 degrees in the CM.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2075 to 2100GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2075 to 2100GeV.
Measured c.m. angular distribution of the PI- for the W range 1400 to 1425GeV.
Measured c.m. angular distribution of the PI- for the W range 1425 to 1450GeV.
Measured c.m. angular distribution of the PI- for the W range 1450 to 1475GeV.
Measured c.m. angular distribution of the PI- for the W range 1475 to 1500GeV.
Measured c.m. angular distribution of the PI- for the W range 1500 to 1525GeV.
Measured c.m. angular distribution of the PI- for the W range 1525 to 1550GeV.
Measured c.m. angular distribution of the PI- for the W range 1550 to 1575GeV.
Measured c.m. angular distribution of the PI- for the W range 1575 to 1600GeV.
Measured c.m. angular distribution of the PI- for the W range 1600 to 1625GeV.
Measured c.m. angular distribution of the PI- for the W range 1625 to 1650GeV.
Measured c.m. angular distribution of the PI- for the W range 1650 to 1675GeV.
Measured c.m. angular distribution of the PI- for the W range 1675 to 1700GeV.
Measured c.m. angular distribution of the PI- for the W range 1700 to 1725GeV.
Measured c.m. angular distribution of the PI- for the W range 1725 to 1750GeV.
Measured c.m. angular distribution of the PI- for the W range 1750 to 1775GeV.
Measured c.m. angular distribution of the PI- for the W range 1775 to 1800GeV.
Measured c.m. angular distribution of the PI- for the W range 1800 to 1825GeV.
Measured c.m. angular distribution of the PI- for the W range 1825 to 1850GeV.
Measured c.m. angular distribution of the PI- for the W range 1850 to 1875GeV.
Measured c.m. angular distribution of the PI- for the W range 1875 to 1900GeV.
Measured c.m. angular distribution of the PI- for the W range 1900 to 1925GeV.
Measured c.m. angular distribution of the PI- for the W range 1925 to 1950GeV.
Measured c.m. angular distribution of the PI- for the W range 1950 to 1975GeV.
Measured c.m. angular distribution of the PI- for the W range 1975 to 2000GeV.
Measured c.m. angular distribution of the PI- for the W range 2000 to 2025GeV.
Measured c.m. angular distribution of the PI- for the W range 2025 to 2050GeV.
Measured c.m. angular distribution of the PI- for the W range 2050 to 2075GeV.
Measured c.m. angular distribution of the PI- for the W range 2075 to 2100GeV.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.57 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.41 GeV.
Cross sections for W = 1.11 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 157.5 deg.
We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.
Cross section averaged over the energy range 3.2 to 3.9 GeV.
Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8 GeV couples to the ηN channel.
Cross sections for photon energies 0.775 to 0.925 GeV.
Cross sections for photon energies 0.975 to 1.125 GeV.
Cross sections for photon energies 1.175 to 1.325 GeV.
Cross sections for photon energies 1.375 to 1.525 GeV.
Cross sections for photon energies 1.575 to 1.725 GeV.
Cross sections for photon energies 1.775 to 1.925 GeV.
We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1100 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7950 GeV.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.
Total cross sections and interference terms (TT and TL).
Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.
Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.042 GeV**2 and W = 2.63 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.320 GeV**2 and W = 2.70 GeV.
Differential cross sections DSIG/DT for Q**2 = 1.785 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.050 GeV**2 and W = 2.33 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.350 GeV**2 and W = 2.47 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.639 GeV**2 and W = 2.58 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.914 GeV**2 and W = 2.62 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.050 GeV**2 and W = 2.09 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.350 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.650 GeV**2 and W = 2.32 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.950 GeV**2 and W = 2.43 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.295 GeV**2 and W = 2.51 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.055 GeV**2 and W = 1.90 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.350 GeV**2 and W = 2.00 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.650 GeV**2 and W = 2.10 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.950 GeV**2 and W = 2.19 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.350 GeV**2 and W = 2.31 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.807 GeV**2 and W = 2.41 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.371 GeV**2 and W = 1.85 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.651 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.950 GeV**2 and W = 1.99 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.350 GeV**2 and W = 2.09 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.850 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DT for Q**2 = 4.307 GeV**2 and W = 2.30 GeV.
Differential cross sections DSIG/DT for Q**2 = 2.968 GeV**2 and W = 1.85 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.357 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.850 GeV**2 and W = 2.01 GeV.
Differential cross sections DSIG/DT for Q**2 = 4.350 GeV**2 and W = 2.11 GeV.
Differential cross sections DSIG/DT for Q**2 = 4.765 GeV**2 and W = 2.16 GeV.
Differential cross sections DSIG/DT for Q**2 = 3.882 GeV**2 and W = 1.86 GeV.
Differential cross sections DSIG/DT for Q**2 = 4.352 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DT for Q**2 = 4.850 GeV**2 and W = 2.00 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.042 GeV**2 and W = 2.63 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.320 GeV**2 and W = 2.70 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 1.785 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.050 GeV**2 and W = 2.33 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.350 GeV**2 and W = 2.47 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.639 GeV**2 and W = 2.58 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.914 GeV**2 and W = 2.62 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.050 GeV**2 and W = 2.09 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.350 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.650 GeV**2 and W = 2.32 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.950 GeV**2 and W = 2.43 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.295 GeV**2 and W = 2.51 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.055 GeV**2 and W = 1.90 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.350 GeV**2 and W = 2.00 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.650 GeV**2 and W = 2.10 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.950 GeV**2 and W = 2.19 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.350 GeV**2 and W = 2.31 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.807 GeV**2 and W = 2.41 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.371 GeV**2 and W = 1.85 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.651 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.950 GeV**2 and W = 1.99 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.350 GeV**2 and W = 2.09 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.850 GeV**2 and W = 2.21 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 4.307 GeV**2 and W = 2.30 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 2.968 GeV**2 and W = 1.85 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.357 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.850 GeV**2 and W = 2.01 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 4.350 GeV**2 and W = 2.11 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 4.765 GeV**2 and W = 2.16 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 3.882 GeV**2 and W = 1.86 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 4.352 GeV**2 and W = 1.91 GeV.
Differential cross sections DSIG/DPHI for Q**2 = 4.850 GeV**2 and W = 2.00 GeV.
Spin density matrix elements R^04_0 and R^04_1-1 from the 1D projection method.
Spin density matrix element R^04_00 using the moments method.
Spin density matrix element RE(R^04_10) using the moments method.
Spin density matrix element R^04_1-1 using the moments method.
Spin density matrix element R^01_00 using the moments method.
Spin density matrix element R^01_11 using the moments method.
Spin density matrix element RE(R^01_10) using the moments method.
Spin density matrix element R^01_1-1 using the moments method.
Spin density matrix element IM(R^02_10) using the moments method.
Spin density matrix element IM(R^02_1-1) using the moments method.
Spin density matrix element R^05_00 using the moments method.
Spin density matrix element R^05_11 using the moments method.
Spin density matrix element RE(R^05_10) using the moments method.
Spin density matrix element R^05_1-1 using the moments method.
Spin density matrix element IM(R^06_10) using the moments method.
Spin density matrix element IM(R^06_1-1) using the moments method.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.