The cross sections for the line-reversed reaction pairs K+n→K0p and K−p→K¯0n, and K+p→K0Δ++ and K−n→K¯0Δ− have been determined with high statistics and good relative normalization at 8.36 and 12.8 GeV/c in a spectrometer experiment at Stanford Linear Accelerator Center. The cross sections for the K+-induced reactions are larger than for the K−, contrary to the expectations of weakly-exchange-degenerate Regge-pole models. The ratio of the reaction cross sections is about the same as at lower energies and shows little change with momentum transfer.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
A spin-parity 1 + ϱπ enhancement is observed for the 3π mass spectrum in the reaction K − p → Σ − π + π + π − where events with a small (K − → Σ − ) momentum transfer are selected. The mass (1040 MeV) and width (230 MeV) of this enhancement are reminiscent of the A 1 → ϱπ bump which has mainly been observed in the diffractive-like processes. The cross section for this enhancement at 4.15 GeV/ c incident K − momentum is (3.6 ± 0.5) μ b.
No description provided.
No description provided.
Topological and channel cross sections are given for annihilation and inelastic final states produced in p p interactions at 9.1 GeV/c. Cross sections for prominent resonances in specific channels and charged pion, ϱ 0 and Δ ++ inclusive cross sections are also presented.
No description provided.
FITTED FORWARD D(SIG)/DT = 153 +- 8 MB/GEV**2.
CHANNEL CROSS SECTIONS FOR 2, 4, 6, AND 8 PRONG REACTIONS.
The photoproduction of ρ0 and ρ− mesons has been studied at 3 GeV in the reactions γd→dπ±π−, γd→psnπ+π−, and γd→pspπ−π0. For ρ0 and ρ− production in these reactions we present the total and differential cross sections, the decay angular distributions, and the spin density matrix elements. The photoproduction of the ρ0 is found to be consistent with s-channel helicity conservation and is dominated by natural-parity exchange. The ρ− meson production has approximately equal natural- and unnatural-parity-exchange contributions. The unnatural-parity-exchange contribution is consistent with one-pion exchange and is used to estimate the value of Γρπγ.
No description provided.
No description provided.
No description provided.
A study of 205-GeV/c π−p interactions has been made with a 48 800-picture exposure in the bare Fermilab 30-inch hydrogen bubble chamber. The average number of charged particles produced per inelastic interaction is 7.99±0.06. The elastic cross section is 3.18±0.13 mb and the total cross section is 24.19±0.44 mb. The inclusive cross sections for neutral-particle production are: σ(γ)=171.3±15.3 mb, σ(KS0)=3.64±0.61 mb (x<0.3), σ(Λ)=1.71±0.34 mb (x<0.3), and σ(Λ¯)=0.59±0.23 mb (x<0.1). The average number of π0's produced per inelastic collision is consistent with a linear rise with the number of charged particles, and about equal to the number of produced π− or π+. The average number of K0's, Λ's, and Λ¯'s is consistent with very little dependence on the number of charged particles. General characteristics of neutral-particle production are presented and compared with other experiments. For each topology the produced neutral energy is ∼13 of the incident energy.
No description provided.
No description provided.
No description provided.
We present cross sections for coherent and non-coherent production of one, two and three pions in pd reactions at 19 GeV/ c . The mass distributions of the two pion non-coherent channels are studied. Strong single Δ(1236) and also some double Δ production is observed. Clear evidence for ϱ production is seen.
SLOPE FITTED FOR -TP = 0.00 TO 0.14 GEV**2.
Diffractive dissociation of neutrons and N ∗ production are studied in the reaction π − n → π − π − p at 15 GeV/ c . The reaction is dominated by a broad, low-mass diffractive enhancement in the pπ − mass. Evidence is presented for the production of at least one N ∗ resonance in the mass region 1.4–1.8 GeV. Comparison with ISR data suggest that this N ∗ resonance is produced by pomeron exchange. The N ∗ production occurs predominantly at t ′ > 0.1 GeV 2 which suggests a different coupling from the usual diffractive reactions. The non-resonant diffractive background is compared with a double-Regge model and the statistical dissociation model.
No description provided.
DEPENDENCE OF SLOPE OF D(SIG)/DT ON <P PI-> MASS. DATA FITTED OUT TO -TP=0.4 GEV**2, EXCEPT TO 0.2 GEV**2 FOR M < 1.2 GEV.
No description provided.
The reaction π − + p → π − + π − + π + + p at 25 GeV/ c was studied in the mass region M 3 π ⩾ 1.8 GeV with leading π + . The mass spectrum of the π + π − system shows peaks corresponding to the ϱ 0 , f and g 0 resonances and an enhancement around 1.9 GeV. Evidence is presented for a J P = 3 + s-wave g 0 π − state (A 4 ) similar to the ϱ 0 π − (A 1 ) and fπ − (A 3 ) threshold enhancements.
No description provided.
Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
Reactions K + n → (K π )N have been studied using data from the CERN 2 m deuterium bubble chamber obtained with incident K + of 8.25 GeV/ c . There is an abundant production of K ∗ (892) and K ∗ (1420). The reaction and K ∗ resonance production cross sections are presented. K ∗ production and decay angular distributions are analyzed. Charge-exchange reactions are dominated by unnatural parity exchange and the non-charge-exchange reaction by natural parity exchange. The K ∗ 0 (892) data are in good agreement with the predictions of an OPE absorption model. A broad enhancement around 1850 MeV could be interpreted as a signal for the K ∗ 0 (1780).
No description provided.
No description provided.
FIT TO D(SIG)/DT = A*EXP(SLOPE*TP) FOR K* EVENTS WITH -TP < 0.24 GEV**2.