Date

Inclusive and differential measurements of the $\mathrm{t\bar{t}}γ$ cross section and the $\mathrm{t\bar{t}}γ/\mathrm{t\bar{t}}$ cross section ratio in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-23-002, 2025.
Inspire Record 3076866 DOI 10.17182/hepdata.157848

Inclusive and differential cross section measurements of top quark pair ($\mathrm{t\bar{t}}$) production in association with a photon ($γ$) are performed as a function of lepton, photon, top quark, and $\mathrm{t\bar{t}}$ kinematic observables, using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events containing two leptons (electrons or muons) and a photon in the final state are considered. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is measured to be 137 $\pm$ 8 fb, in a phase space including events with a high momentum, isolated photon. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is also measured to be 56 $\pm$ 5 fb when considering only events where the photon is emitted in the production part of the process. Both measurements are in agreement with the theoretical predictions, of 126 $\pm$ 19 fb and 57 $\pm$ 5 fb, respectively. Differential measurements are performed at the particle and parton levels. Additionally, inclusive and differential ratios between the cross sections of $\mathrm{t\bar{t}}γ$ and $\mathrm{t\bar{t}}$ production are measured. The inclusive ratio is found to be 0.0133 $\pm$ 0.0005, in agreement with the standard model prediction of 0.0127 $\pm$ 0.0008. The top quark charge asymmetry in $\mathrm{t\bar{t}}γ$ production is also measured to be $-$0.012 $\pm$ 0.042, compatible with both the standard model prediction and with no asymmetry.

34 data tables

Absolute differential distributions of the leading top quark $p_{\mathrm{T}}$. The nominal MC prediction used to compare the experimental results to is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and Madgraph5 at LO in QCD for photons from the decay part of the process. The alternative prediction is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and a POWHEG+Pythia $\mathrm{tt}$ simulation at NLO in QCD for photons from the decay part of the process.

Normalized differential distributions of the leading top quark $p_{\mathrm{T}}$. The nominal MC prediction used to compare the experimental results to is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and Madgraph5 at LO in QCD for photons from the decay part of the process. The alternative prediction is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and a POWHEG+Pythia $\mathrm{tt}$ simulation at NLO in QCD for photons from the decay part of the process.

Absolute differential distributions of the $\Delta R (\gamma,\mathrm{tt})$. The nominal MC prediction used to compare the experimental results to is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and Madgraph5 at LO in QCD for photons from the decay part of the process. The alternative prediction is obtained with Madgraph5 at NLO in QCD for photons from the production part of the process and a POWHEG+Pythia $\mathrm{tt}$ simulation at NLO in QCD for photons from the decay part of the process.

More…

Observation of $t\bar{t}\gamma\gamma$ production at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-125, 2025.
Inspire Record 2930296 DOI 10.17182/hepdata.159299

This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.

3 data tables

Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.

Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.

Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.


Differential cross-section measurements of $D^{\pm}$ and $D_{s}^{\pm}$ meson production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 086, 2025.
Inspire Record 2862073 DOI 10.17182/hepdata.155981

The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.

6 data tables

The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.

The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.

The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.

More…

Measurement of the inclusive $\mathrm{t\bar{t}}$ cross section in final states with at least one lepton and additional jets with 302 pb$^{-1}$ of pp collisions at $\sqrt{s}$ = 5.0 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2025) 099, 2025.
Inspire Record 2844500 DOI 10.17182/hepdata.150676

A measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb$^{-1}$. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5 $\pm$ 1.6 (stat) $^{+2.6}_{-2.5}$ (syst) $\pm$ 1.2 (lumi) pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 $\pm$ 1.5 (stat) $\pm$ 2.4 (syst) $\pm$ 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5 $^{+3.5}_{-3.7}$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.

11 data tables

Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\Delta R_\mathrm{med}(\mathrm{j,j')}}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\mathit{m}(\mathrm{u},\mathrm{u'})}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

Distributions for data and expected signal and background contributions of the MVA score for the e + jets channel in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.

More…

Search for same-charge top-quark pair production in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 084, 2025.
Inspire Record 2832100 DOI 10.17182/hepdata.155341

A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.

15 data tables

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

More…

Version 2
Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 860 (2025) 139177, 2025.
Inspire Record 2829504 DOI 10.17182/hepdata.154444

Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.

22 data tables

Measured cross-section values in the fiducial phase space and inclusive volume for the various $t\bar{t}+jets$ categories.

Post-fit agreement between data and MC prediction for $SR_{\mathrm{loose}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest c-tagged jets, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

Post-fit agreement between data and MC prediction for the $SR_{\mathrm{tight}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest jets tagged with c@11%, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

More…

Measurement of the $\mathrm{t\bar{t}}$H and tH production rates in the H $\to$$\mathrm{b\bar{b}}$ decay channel using proton-proton collision data at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 097, 2025.
Inspire Record 2808025 DOI 10.17182/hepdata.152799

An analysis of the production of a Higgs boson ($H$) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}H$) or a single top quark ($tH$) is presented. The Higgs boson decay into a bottom quark-antiquark pair ($H \to\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}H$ production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}H$ production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3 $^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}H$ and $tH$ production rates, and the results are combined with those obtained in other Higgs boson decay channels.

14 data tables

Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.

Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.

Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.

More…

Measurement of the polarizations of prompt and non-prompt J/$\psi$ and $\psi$(2S) mesons produced in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 858 (2024) 139044, 2024.
Inspire Record 2800640 DOI 10.17182/hepdata.150034

The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.

4 data tables

prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$

More…

Study of the doubly charmed tetraquark $T_{cc}^+$

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Commun. 13 (2022) 3351, 2022.
Inspire Record 1915358 DOI 10.17182/hepdata.113470

An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.

20 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Mass distribution for $D^0 \pi^+$ pairs from selected $D^0 D^0 \pi^+$ candidates with a mass below the $D^{*+}D^0$ mass threshold with non-$D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

$D^0 D^0$~mass distributions for selected candidates with the $D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

More…

Observation of an exotic narrow doubly charmed tetraquark

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Phys. 18 (2022) 751-754, 2022.
Inspire Record 1915457 DOI 10.17182/hepdata.114869

Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.

2 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted by assigning the a weight to every candidate.