We have observed Σc++ and Σc0 baryons in nonresonant e+e− interactions through their decays to Λc+π± using the CLEO detector. The mass difference M(Σc++)-M(Λc+) is measured to be 167.8±0.4±0.3 MeV; for M(Σc0)-M(Λc+) we find 167.9±0.5±0.3 MeV. Σc decay accounts for (18±3±5)% of Λc+ production.
The cross section ratio is multiplied by a factor of 1.5 to account for theunobserved SIGMA/C(2455)+.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report results from two new methods for measuring the total production of charmed particles in nonresonant e+e− annihilations at √s =10.5 GeV. The rate for detection of events containing two reconstructed charmed mesons relative to that for events containing one is used to extract information about total charm production independent of decay branching fractions. The value of ΔRcc¯, the total charm-pair cross section normalized to the pointlike μ-pair cross section, is found to be 1.13−0.13+0.17±0.09, under an assumption of limited particle correlations. In an independent analysis the inclusive cross section for e+e−→qq¯→e±X is measured to be 0.293±0.017±0.017 nb. Using measured relative production rates and semileptonic branching fractions of D0 and D+ mesons and estimates of these quantities for Ds and Λc, this is found to correspond to ΔRcc¯=2.07±0.12±0.26. These two measurements are discussed in the context of measurements made by reconstruction of exclusive hadronic decay modes and of theoretical expectations.
Charm quarks production cross section (C=CQCQBQR) evaluated from tagged events.
Results using method 1).
Results using method 2).
A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.
Two different models (I and II) are considered (see text).
The x and Q 2 dependence of the single photon exchange cross section d 2 σ /d Q 2 d x and the proton structure functions F 2 ( x , Q 2 ) and R ( x , Q 2 ) have been measured in deep inelastic muon proton scattering in the region 0.02 < x < 0.8 and 3 < Q 2 < 190 GeV 2 . By comparing data at different incident muon energies R was found to have little kinematic dependence and an average value of −0.010 ± 0.037 (stat.) ± 0.102 (stat.). The observed deviations from scaling gave the value of Λ MS , the QCD mass scale parameter, to be 105 −45 +55 (stat.) −45 +85 (syst.) MeV. The fraction of the momentum of the nucleon carried by gluons was found to be ∼56% at Q 2 ∼22.5 GeV 2 . It is shown that to obtain a description of the data for F 2 ( x , Q 2 ) together with that measured in deep inelastic electron-proton scattering at lower Q 2 it is necessary to include additional higher twist contributions. The value of Λ MS remains unchanged with the inclusion of these contributions which were found to have an x -dependence of the form x 3 /(1 − x ).
No description provided.
No description provided.
No description provided.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.
No description provided.
No description provided.
No description provided.
We have measured the reactions e + e − → e + e − → μ + μ − and e + e − → γγ at c.m. energies between 12 and 31.6 GeV. Excellent agreement with the predictions of QED has been found, resulting in cut off parameters Λ + > 112 GeV and Λ − > 139 GeV for the first process and Λ + > 34 GeV and Λ − > 42 GeV (95% c.1.) for the last one. A limit on the Weinberg angle of sin 2 θ W < 0.55 (95% c.1.) has been obtained.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
In a broadband neutrino exposure of the Fermilab 15-ft bubble chamber, we observe the production of the Σc++(2426) charmed baryon followed by its decay to Λc+(2260) and π+. We find the mass of the Λc+ to be 2257±10 MeV and the m(Σc++)−m(Λc+) mass difference to be 168±3 MeV. Previously unseen two-body decay modes of the Λc+(2260) are observed.
No description provided.
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.