Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Version 2
Search for electroweak production of charginos and neutralinos at $\sqrt{s}$ =13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137460, 2023.
Inspire Record 2085373 DOI 10.17182/hepdata.127766

This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, and mass-degenerate higgsino-like supersymmetric particles $\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^0$, and $\tilde{\chi}_3^0$. In the limit of a nearly-massless lightest supersymmetric particle $\tilde{\chi}_1^0$, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of $\tilde{\chi}_2^0$ $\to$ Z$\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ $\to$ H$\tilde{\chi}_1^0$, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.

44 data tables

SM background prediction vs. observation in the b-veto signal region

SM background observation/prediction in the bVeto signal region

SM background prediction vs. observation in the WH signal region

More…

Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s} = 13~\text{TeV}$ using the ATLAS experiment and the full Run 2 dataset

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 158, 2023.
Inspire Record 2080541 DOI 10.17182/hepdata.127994

This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

112 data tables

This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>

Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

More…

Search for resonances decaying to three W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 021802, 2022.
Inspire Record 2015402 DOI 10.17182/hepdata.102646

A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} =$ 13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.

11 data tables

Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR4.

Observed upper limits at 95\% \CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses after combinign with an analysis of the all-hadronic final state.

Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.

More…

Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

64 data tables

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.

More…

Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012002, 2022.
Inspire Record 2000816 DOI 10.17182/hepdata.115182

A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.

38 data tables

Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2

More…

A search for an unexpected asymmetry in the production of $e^+ \mu^-$ and $e^- \mu^+$ pairs in proton-proton collisions recorded by the ATLAS detector at $\sqrt s = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 830 (2022) 137106, 2022.
Inspire Record 1990948 DOI 10.17182/hepdata.115579

This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.

26 data tables

Observed yields, and (post-fit) expected yields for the data-driven SM estimates. Yields are shown for the benchmark RPV-supersymmetry signal points in SR-RPV and the leptoquark signal points in SR-LQ after a fit excluding the $e^{+}\mu^{-}$ signal region and setting $\mu_{\text{sig}}=1$. Small weights correcting for muon charge biases affect all rows except that containing the fake-lepton estimate. These weights, $w_i$, cause non-integer yields. The uncertainties, $\sqrt{\sum_i w_i^2}$, are given for data to support the choice made to model the yields with a Poisson distribution.

The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

More…

Search for dark matter produced in association with a Standard Model Higgs boson decaying into $b$-quarks using the full Run 2 dataset from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 209, 2021.
Inspire Record 1913723 DOI 10.17182/hepdata.104702

The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.

73 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=LimitContour_ZP2HDM_obs">Observed 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp">Expected 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_1s">Expected +- 1sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_2s">Expected +- 2sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_obs">Observed 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp">Expected 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_obs">Observed 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp">Expected 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_obs">Observed 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp">Expected 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> </ul> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Limits_ZP2HDM">95% CL upper limit on the cross-section for the Z'-2HDM model</a> <li><a href="?table=Limits_2HDMa_tb1_sp0p35">95% CL upper limit on the ggF cross-section in the 2HDM+a model</a> <li><a href="?table=Limits_2HDMa_tb10_sp0p35">95% CL upper limit on the bbA cross-section in the 2HDM+a model</a> <li><a href="?table=MIL">95% CL upper limit on the visible cross-section</a> </ul> <b>Theoretical cross-sections:</b> <ul> <li><a href="?table=CrossSections_ZP2HDM">Cross-section for the Z'-2HDM model</a> <li><a href="?table=CrossSections_2HDMa_tb1_sp0p35">Cross-section for ggF production in the 2HDM+a model</a> <li><a href="?table=CrossSections_2HDMa_tb10_sp0p35">Cross-section for bbA production in the 2HDM+a model</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_post_plot_2b_150_200">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_2b_200_350">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_2b_350_500">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_2b_500_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=SR_post_plot_2b_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=SR_post_plot_3b_150_200">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_3b_200_350">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_3b_350_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_3b_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy higher than 500 GeV</a> <li><a href="?table=MET_post_plot_0L2b">Missing energy in events with 0 leptons and 2 b-jets</a> <li><a href="?table=MET_post_plot_0L3b">Missing energy in events with 0 leptons and at least 3 b-jets</a> <li><a href="?table=CR_post_plot_CR1">Yields in the different missing energy bins and muon-charge of the 1-lepton control region</a> <li><a href="?table=CR_post_plot_CR2">Yields in the different METlepInv bins of the 2-lepton control region</a> </ul> <b>Cut flows:</b> The tables contain three columns, corresponding to the Z'-2HDM and 2HDM+a model assuming 100% ggF or bbA production respectively. <ul> <li><a href="?table=Resolved_150_200_2b">Signal region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_2b">Signal region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_2b">Signal region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_500_750_2w0b">Signal region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=Merged_750_2w0b">Signal region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=Resolved_150_200_3pb">Signal region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_3pb">Signal region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_3pb">Signal region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_2w1pb">Signal region with at least 3 b-jets and missing energy higher than 500 GeV</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_150_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_200_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_350_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_500_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_750ptv_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_150_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_200_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_350_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_500ptv_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET higher than GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_150_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_200_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_350_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_500_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_750ptv_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_150_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_200_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_350_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_500ptv_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET higher than 500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_150_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_200_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_350_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_500_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_750ptv_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_150_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_200_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_350_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_500ptv_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET higher than 500 GeV</a> </ul>

Observed 95% CL exclusion limit for the Zprime-2HDM model.

Expected 95% CL exclusion limit for the Zprime-2HDM model.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

80 data tables

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.

More…