The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.
Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.
Differential cross-section dsig_ee/dm_qq.
Differential cross-section dsigma_ee/dsqrt(shat).
In order to determine the ηNN coupling constant we have measured the two reactions K − p→ Λη and K − p→ Λπ 0 with a magnetic wire chamber spectrometer which contained a gamma counter for the γγ decays of π 0 and η. The Λ polarization and the differential cross sections are given. The latter have quite different u dependences. Their ratio is interpreted, in terms of a nucleon-Regge exchange model, as the effect of a small ηNN coupling constant for which we obtain G η NN 2 = G π NN 2 · (0.26 ± 0.10) as allowed by SU(3). The large value given by Heisenberg's non-linear field theory, G η NN 2 = G π NN 2 · 0.9, is excluded by this measurement if the characteristic u dependence of the Λπ 0 channel is attributed to N α Regge exchange.
Axis error includes +- 10/10 contribution.
No description provided.
Axis error includes +- 10/10 contribution.