Pairs of τ leptons produced at s=3.77 GeV have been studied in eμ, ee, and μμ final states. The leptonic branching ratios have been measured to be B(τ→eνν)=(18.2±0.7±0.5)% and B(τ→μνν)=(18.0±1.0±0.6)%. Limits have been set for the two-body decays τ→eG and τ→μG, where G is a light Goldstone boson.
No description provided.
No description provided.
No description provided.
The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6−1.8) GeV/ c is (1.6 −0.7 +1.0 ) × 10 −5 per hadronic event.
Results from 6 antideuterons detected (3 from UPSI(2S), 2 from (IS) and 1 from (4S)).
No description provided.
A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.
Two different models (I and II) are considered (see text).
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.
Using the ARGUS detector at DORIS we have observed the prediction of the charged D ∗ meson in e + e − annihilation at a center of mass energy of 10 GeV. The D ∗ fragmentation function has been measured using the decay channels D ∗+ → D 0 π + and D 0 → K − π + and K − π + π + π − .
RESULTS EXTRAPOLATED TO X>O. SYSTEMATIC ERRORS INCLUDED.
ERRORS ARE STATISTICAL ONLY.
Using the ARGUS detector at DORIS we have obtained evidence for a resonance which decays into an F meson and a photon. The observed mass is 2109 ± 9 ± 7 MeV, which is 144 ± 9 ± 7 MeV greater than the F meson mass. Its properties are consistent with those of the F ∗ meson with J P = 1 − .
No description provided.
The total cross section fore+e− annihilation into hadrons for center of mass energies from 9.4 to 9.5 GeV has been measured with the nonmagnetic DESY-Heidelberg detector at DORIS. A value ofR=σhad/σµµ=3.8±0.7 for the continuum region around the Υ (9.46) resonance has been determined. The ratioΓeeΓhad/Γtot of electronic, hadronic and total widths has been reevaluated to be (1.00±0.23) keV for the Υ resonance and (0.37±0.16) keV for the Υ′. In addition, a search for directly produced pohotons from Υ decays of the type Υ→γ+gluon+gluon has been performed. The Υ decay into muon pairs has also been searched for.
TOTAL CROSS SECTION FOR THE CONTINUUM REGIONS AROUND THE UPSI(9460)0 AND UPSI(10020)0 RESONANCES.
The ϒ′ state has been observed as a narrow resonance at M ( ϒ ′) = 10.02 ± 0.02 GeV in e + e − annihilations, using a NaI and lead-glass detector in the DORIS storage ring at DESY. The ratio Г ee Г had /Г tot of electronic, hadronic, and total widths has been measured to be 0.32 ± 0.13 keV. The parameters of the Г particle have also been determined to be/ M (Г)
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.