K+ p Interactions Near 3-GeV/c. 2. Baryon Resonance Production

Musgrave, B. ; Peeters, P. ; Schreiner, P. ; et al.
Nucl.Phys.B 87 (1975) 365-398, 1975.
Inspire Record 1720 DOI 10.17182/hepdata.1112

Baryon resonance production in quasi-two-body reactions has been studied for the channels K + p→K°p π + , K + n π + and K + p π ° at beam momenta of 2.53, 2.76 and 3.20 GeV/ c . The production cross sections, four-momentum transfer distributions and density matrix elements are given for the Δ(1236), N ∗ (1400), N ∗ (1500) and N ∗ (1680) states. The reaction K + p→K° Δ ++ (1236) is compared to the line reversed reaction K − n → K °Δ − and the charge-exchange SU(3) sum rule for pseudo-scalar meson plus Δ(1236) is tested.

1 data table match query

No description provided.


K+- proton scattering from 200 to 600 MeV/c

Burnstein, R.A. ; LeFebvre, J.J. ; Petersen, D.V. ; et al.
Phys.Rev.D 10 (1974) 2767-2777, 1974.
Inspire Record 97215 DOI 10.17182/hepdata.24945

The differential cross section for K+p elastic scattering has been measured at several momenta in the interval 200-600 MeV/c within a hydrogen bubble chamber. The data have been fitted with a partial-wave analysis. We obtain solutions which are dominated over the entire momentum range by s-wave scattering, with constructive interference between the nuclear and Coulomb scattering. The effective-range approximation with only s waves yields a K+p scattering length a=−0.314±0.007 F and an effective range r0=0.36±0.007 F. The measured total inelastic cross section at 588 MeV/c is 11−5+9 μb.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Large angle k+ p elastic scattering at 10 gev/c

Baglin, C. ; Briandet, P. ; Carlson, P.J. ; et al.
Phys.Lett.B 47 (1973) 89-92, 1973.
Inspire Record 95211 DOI 10.17182/hepdata.28014

K + p elastic scattering has been measured over nearly the whole angular range at an incident momentum of 10 GeV/ c . The differential cross-section is found to decrease smoothly in the forward direction to - t ≈ 2 (GeV/ c ) 2 , where there is a change in slope, followed by a further decrease to - t ≈ 6 (GeV/ c ) 2 . Around 90° c.m. the cross-section is approximately 1 nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c . The backward peak has no structure.

1 data table match query

THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).