Showing 10 of 10 results
There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 50-55%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 50-55%
The PT scale factor for V2(PT) as a funtion of collision centrality
The PT scale factor for V3(PT) as a funtion of collision centrality
The V2 scale factor as a funtion of collision centrality
The V3 scale factor as a funtion of collision centrality
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
No description provided.
Correlations between the elliptic or triangular flow coefficients $v_m$ ($m$=2 or 3) and other flow harmonics $v_n$ ($n$=2 to 5) are measured using $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 $\mu$b$^{-1}$. The $v_m$-$v_n$ correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, $v_3$ is found to be anticorrelated with $v_2$ and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities $\epsilon_2$ and $\epsilon_3$. On the other hand, it is observed that $v_4$ increases strongly with $v_2$, and $v_5$ increases strongly with both $v_2$ and $v_3$. The trend and strength of the $v_m$-$v_n$ correlations for $n$=4 and 5 are found to disagree with $\epsilon_m$-$\epsilon_n$ correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to $v_n$ and a nonlinear term that is a function of $v_2^2$ or of $v_2v_3$, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to $v_4$ and $v_5$ are found to be consistent with previously measured event-plane correlations.
Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
The $\Delta\eta$ dependence of the near-side (|$\Delta\phi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the away-side (|$\Delta\phi - \pi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the ratio of the near- to away-side correlated yields in d+Au collisions. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in low ZDC-Au activity d+Au collisions.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in high ZDC-Au activity d+Au collisions.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selections is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
New PHENIX measurements of the anisotropic flow coefficients $v_2\{\Psi_2\}$, $v_3\{\Psi_3\}$, $v_4\{\Psi_4\}$ and $v_4\{\Psi_2\}$ for identified particles ($\pi^{\pm}$, $K^{\pm}$, and $p+\bar{p}$) obtained relative to the event planes $\Psi_n$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $K^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $K^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $p\bar{p}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $p\bar{p}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 0%–10% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 30%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 0%–10% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 30%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 0%–10% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 30%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Freeze-out temperature $T_f$ in the blast-wave model fit to azimuthal anisotropy and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Radially averaged flow rapidity $<\rho>$ in the blast-wave model fit to azimuthal anisotropy and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Radial flow rapidity anisotropy $\rho_n$ in the blast-wave model fit to azimuthal anisotropy $v_2$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Radial flow rapidity anisotropy $\rho_n$ in the blast-wave model fit to azimuthal anisotropy $v_3$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Radial flow rapidity anisotropy $\rho_n$ in the blast-wave model fit to azimuthal anisotropy $v_4$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Radial flow rapidity anisotropy $\rho_n$ in the blast-wave model fit to azimuthal anisotropy $v_4\{\Psi_2\}$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Spatial anisotropy $s_n$ in the blast-wave model fit to azimuthal anisotropy $v_2$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Spatial anisotropy $s_n$ in the blast-wave model fit to azimuthal anisotropy $v_3$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Spatial anisotropy $s_n$ in the blast-wave model fit to azimuthal anisotropy $v_4$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Spatial anisotropy $s_n$ in the blast-wave model fit to azimuthal anisotropy $v_4\{\Psi_2\}$ and invariant yields in Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 10%–20% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 20%–30% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 30%–40% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 40%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 50%–60% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 10%–20% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 20%–30% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 30%–40% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 40%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $K^{\pm}$ in 50%–60% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 10%–20% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 20%–30% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 30%–40% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 40%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $p\bar{p}$ in 50%–60% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.
ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV are shown using a dataset of approximately 7 $\mu$b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 0-2%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-2%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 40-50%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 10-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 20-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 30-40%.
The triangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 25-60%.
The triangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 25-60%.
The triangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-60%.
The quadrangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The quadrangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-25%.
The quadrangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 0-2%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-2%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The triangular flow harmonic measured with the two-particle cumulats as a function of pseudorapidity in centrality bin 0-60%.
The triangular flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-60%.
The triangular flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 0-60%.
The quadrangular flow harmonic measured with the two-particle cumulats as a function of pseudorapidity in centrality bin 0-25%.
The quadrangular flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-25%.
The quadrangular flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 0-25%.
The second flow harmonic measured with the two-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the four-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the six-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the eight-particle cumulats as a function of <Npart>.
The ratio of second flow harmonics measured with the six- and four-particle cumulants as a function of <Npart>.
The ratio of second flow harmonics measured with the eight- and four-particle cumulants as a function of <Npart>.
The second flow harmonic measured with the Event Plane method as a function of <Npart>.
The triangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The quadrangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctuations, F(v2), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v3), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v4), as a function of <Npart>.
The second flow harmonic measured with the two-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the four-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the six-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the eight-particle cumulats as a function of <Npart>.
The ratio of second flow harmonics measured with the six- and four-particle cumulants as a function of <Npart>.
The ratio of second flow harmonics measured with the eight- and four-particle cumulants as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctuations, F(v2), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v3), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v4), as a function of <Npart>.
The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5
The relationship between centrality intervals and MEAN(Npart) estimated from the Glauber model.
The MEAN(Npart) dependence of MEAN(V2) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V2) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V2)/MEAN(V2) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of MEAN(V3) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V3) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V3)/MEAN(V3) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of MEAN(V4) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V4) for three pT ranges together with the total systematic uncertainties.
The MEAN(Npart) dependence of SIGMA(V4)/MEAN(V4) for three pT ranges together with the total systematic uncertainties.
Eccentricity curves for EPSILON2 in Figure 12.
Eccentricity curves for EPSILON3 in Figure 12.
Eccentricity curves for EPSILON4 in Figure 12.
Comparison of MEAN(V2) and SQRT(MEAN(V2**2)), derived from the EbyE V2 distributions, with the V2(EP), for charged particles in the pT > 0.5 GeV range.
The ratios of SQRT(MEAN(V2**2)) and V2(EP) to MEAN(V2), for charged particles in the pT > 0.5 GeV range.
Comparison of MEAN(V3) and SQRT(MEAN(V3**2)), derived from the EbyE V3 distributions, with the V3(EP), for charged particles in the pT > 0.5 GeV range.
The ratios of SQRT(MEAN(V3**2)) and V3(EP) to MEAN(V3), for charged particles in the pT > 0.5 GeV range.
Comparison of MEAN(V4) and SQRT(MEAN(V4**2)), derived from the EbyE V4 distributions, with the V4(EP), for charged particles in the pT > 0.5 GeV range.
The ratios of SQRT(MEAN(V4**2)) and V4(EP) to MEAN(V4), for charged particles in the pT > 0.5 GeV range.
Comparison of MEAN(V2) and SQRT(MEAN(V2**2)), derived from the EbyE V2 distributions, with the V2(EP), for charged particles in the 0.5 < pT < 1 GeV range.
The ratios of SQRT(MEAN(V2**2)) and V2(EP) to MEAN(V2), for charged particles in the 0.5 < pT < 1 GeV range.
Comparison of MEAN(V3) and SQRT(MEAN(V3**2)), derived from the EbyE V3 distributions, with the V3(EP), for charged particles in the 0.5 < pT < 1 GeV range.
The ratios of SQRT(MEAN(V3**2)) and V3(EP) to MEAN(V3), for charged particles in the 0.5 < pT < 1 GeV range.
Comparison of MEAN(V4) and SQRT(MEAN(V4**2)), derived from the EbyE V4 distributions, with the V4(EP), for charged particles in the 0.5 < pT < 1 GeV range.
The ratios of SQRT(MEAN(V4**2)) and V4(EP) to MEAN(V4), for charged particles in the 0.5 < pT < 1 GeV range.
Comparison of MEAN(V2) and SQRT(MEAN(V2**2)), derived from the EbyE V2 distributions, with the V2(EP), for charged particles in the pT > 1 GeV range.
The ratios of SQRT(MEAN(V2**2)) and V2(EP) to MEAN(V2), for charged particles in the pT > 1 GeV range.
Comparison of MEAN(V3) and SQRT(MEAN(V3**2)), derived from the EbyE V3 distributions, with the V3(EP), for charged particles in the pT > 1 GeV range.
The ratios of SQRT(MEAN(V3**2)) and V3(EP) to MEAN(V3), for charged particles in the pT > 1 GeV range.
Comparison of MEAN(V4) and SQRT(MEAN(V4**2)), derived from the EbyE V4 distributions, with the V4(EP), for charged particles in the pT > 1 GeV range.
The ratios of SQRT(MEAN(V4**2)) and V4(EP) to MEAN(V4), for charged particles in the pT > 1 GeV range.
Bessel-Gaussian fit parameters from Eq. (1.4) and total errors.
The dependence of MEAN(V2) and V2(RP) on MEAN(Npart).
The dependence of SIGMA(V2) and DELTA(V2) on MEAN(Npart).
The dependence of SIGMA(V2) / MEAN(V2) and DELTA(V2) / V2(RP) on MEAN(Npart).
Comparison of the V2(RP) obtained from the Bessel-Gaussian fit of the V2 distributions with the values for two-particle (V2(calc){2}), four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants calculated directly from the unfolded V2 distributions.
The ratios of the four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the fit results (V2(RP)), with the total uncertainties.
The ratios of the six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the four-particle (V2(calc){4}) cumulants, with the total uncertainties.
Comparison of the V3(RP) obtained from the Bessel-Gaussian fit of the V3 distributions with the values for two-particle (V3(calc){2}), four-particle (V3(calc){4}), six-particle (V3(calc){6}) and eight-particle (V3(calc){8}) cumulants calculated directly from the unfolded V3 distributions.
The ratios of the four-particle (V3(calc){4}), six-particle (V3(calc){6}) and eight-particle (V3(calc){8}) cumulants to the fit results (V3(RP)), with the total uncertainties.
The ratios of the six-particle (V3(calc){6}) and eight-particle (V3(calc){8}) cumulants to the four-particle (V3(calc){4}) cumulants, with the total uncertainties.
The standard deviation (SIGMA(V2)), the width obtained from Bessel-Gaussian function (DELTA(V2)), the width F1 = SQRT( ( V2(calc){2}**2 - V2(calc){4}**2 ) / 2 ) estimated from the two-particle cumulant (V2(calc){2}) and four-particle cumulant (V2(calc){4}), where these cumulants are calculated analytically via Eq. (5.3) from the V2 distribution.
Various estimates of the relative fluctuations given as SIGMA(V2) / MEAN(V2), DELTA(V2) / V2(RP), F2 = SQRT( ( V2(calc){2}**2 - V2(calc){4}**2) / ( 2*V2(calc){4}**2 ) ) and F3 = SQRT( ( V2(calc){2}**2 - V2(calc){4}**2) / ( V2(calc){2}**2 + V2(calc){4}**2 ) ).
Comparison in 0.5 < pT < 1 GeV of the V2(RP) obtained from the Bessel-Gaussian fit of the V2 distributions with the values for two-particle (V2(calc){2}), four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants calculated directly from the unfolded V2 distributions.
The ratios for 0.5 < pT < 1 GeV of the four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the fit results (V2(RP)), with the total uncertainties.
The ratios for 0.5 < pT < 1 GeV of the six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the four-particle (V2(calc){4}) cumulants, with the total uncertainties.
Comparison in pT > 1 GeV of the V2(RP) obtained from the Bessel-Gaussian fit of the V2 distributions with the values for two-particle (V2(calc){2}), four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants calculated directly from the unfolded V2 distributions.
The ratios for pT > 1 GeV of the four-particle (V2(calc){4}), six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the fit results (V2(RP)), with the total uncertainties.
The ratios for pT > 1 GeV of the six-particle (V2(calc){6}) and eight-particle (V2(calc){8}) cumulants to the four-particle (V2(calc){4}) cumulants, with the total uncertainties.
The values of V2(RP) and V2(RP,obs) obtained from the Bessel-Gaussian fits to the V2 and V2(obs) distributions, with the statistical uncertainties.
The values of DELTA(V2) and DELTA(V2,obs) obtained from the Bessel-Gaussian fits to the V2 and V2(obs) distributions, with the statistical uncertainties.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Flow coefficients v_n for n = 2, 3, 4, characterizing the anisotropic collective flow in Au+Au collisions at sqrt(s_NN) = 200 GeV, are measured relative to event planes Ψ_n determined at large rapidity. We report v_n as a function of transverse momentum and collision centrality, and study the correlations among the event planes of different order n. The v_n are well described by hydrodynamic models which employ a Glauber Monte Carlo initial state geometry with fluctuations, providing additional constraining power on the interplay between initial conditions and the effects of viscosity as the system evolves. This new constraint improves precision of the extracted viscosity to entropy density ratio eta/s.
Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 0-10% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 10-20% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 20-30% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 30-40% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 40-50% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron azimuthal anisotropy $v_2$, and $v_3$ vs $p_T$ in 50-60% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.
Charged hadron mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurements in Au+Au collisions at 200 GeV.
Charged hadron azimuthal anisotropy $v_2$ and $v_3$ vs centrality in Au+Au collisions at 200 GeV. The corresponding Npart value to each centrality is shown in Fig.3.2.
Charged hadron azimuthal anisotropy $v_4$ vs centrality in Au+Au collisions at 200 GeV. The corresponding Npart value to each centrality is shown in Fig.3.2.
Npart in each centrality bin in Au+Au collisions at 200 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.