A measurement of the $B^0$ meson lifetime using $B^0 \to J/ψK^{*0}$ decays in data from 13 TeV proton-proton collisions with an integrated luminosity of 140 fb$^{-1}$ recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is $$ τ= 1.5053 \pm 0.0012 ~\mathrm{(stat.)} \pm 0.0035 ~\mathrm{(syst.)~ps}. $$ The average decay width, extracted from the effective lifetime and using a parameter from external sources, is $$ Γ_d = 0.6643 \pm 0.0005 ~\mathrm{(stat.)} \pm 0.0016 ~\mathrm{(syst.)}~\mathrm{ps}^{-1}, $$ where the uncertainties are statistical and systematic. The uncertainty due to external sources is negligible at the given precision. The earlier ATLAS measurement of $Γ_s$ in the $B^0_s \to J/ψϕ$ decay was used to derive a value for the ratio of the average decay widths $Γ_d$ and $Γ_s$ for $B^0$ and $B^0_s$ mesons respectively, of $$ \frac{Γ_d}{Γ_s} = 0.9910 \pm 0.0022 ~\mathrm{(stat.)} \pm 0.0036 ~\mathrm{(syst.)}. $$ The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the $B^0$ meson to date.
The measured effective lifetime for the $B^0 \rightarrow J/\psi\,K^{*0}$ decay.
The measured average decay width $\Gamma_{d}\,$ extracted from the average lifetime.
The measured ratio $\Gamma_{d} / \Gamma_{s}\,$ of the average decay widths.
A search for pair production of vector-like leptons coupling to first- and second-generation Standard Model leptons is presented. The search is based on a dataset of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events are categorised depending on the flavour and multiplicity of leptons (electrons or muons), as well as on the scores of a deep neural network targeting particular signal topologies according to the decay modes of the vector-like leptons. In each of the signal regions, the scalar sum of the transverse momentum of the leptons and the missing transverse momentum is analysed. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No significant excess above the Standard Model background expectation is observed and limits are set at 95% confidence level on the production cross-sections of vector-like electrons and muons as a function of the vector-like lepton mass, separately for SU(2) doublet and singlet scenarios. The resulting mass lower limits are 1220 GeV (1270 GeV) and 320 GeV (400 GeV) for vector-like electrons (muons) in the doublet and singlet scenarios, respectively.
Comparison between data and the background prediction for the event yields in the (a) 10 VLL<sub>e</sub> SRs, (b) 10 VLL<sub>μ</sub> SRs, and (c) 9 CRs, after a background-only fit to data (`post-fit') in the (a) VLL<sub>e</sub> SRs and CRs and (b, c) VLL<sub>μ</sub> SRs and CRs. The background contributions in the CRs after the likelihood fit to data in the VLL<sub>e</sub> SRs and CRs are comparable to those in (c). Distributions for the VLL<sub>e</sub><sup>D</sup> and VLL<sub>μ</sub><sup>D</sup> signal points for a VLL mass of 600 GeV are overlaid for comparison in (a) and (b), respectively. The lower panels show the ratio of data to the background estimate (`B.'), separately for post-fit background (black points) and pre-fit background (dashed blue line). The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band.
Comparison between data and the background prediction for the event yields in the (a) 10 VLL<sub>e</sub> SRs, (b) 10 VLL<sub>μ</sub> SRs, and (c) 9 CRs, after a background-only fit to data (`post-fit') in the (a) VLL<sub>e</sub> SRs and CRs and (b, c) VLL<sub>μ</sub> SRs and CRs. The background contributions in the CRs after the likelihood fit to data in the VLL<sub>e</sub> SRs and CRs are comparable to those in (c). Distributions for the VLL<sub>e</sub><sup>D</sup> and VLL<sub>μ</sub><sup>D</sup> signal points for a VLL mass of 600 GeV are overlaid for comparison in (a) and (b), respectively. The lower panels show the ratio of data to the background estimate (`B.'), separately for post-fit background (black points) and pre-fit background (dashed blue line). The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band.
Comparison between data and the background prediction for the event yields in the (a) 10 VLL<sub>e</sub> SRs, (b) 10 VLL<sub>μ</sub> SRs, and (c) 9 CRs, after a background-only fit to data (`post-fit') in the (a) VLL<sub>e</sub> SRs and CRs and (b, c) VLL<sub>μ</sub> SRs and CRs. The background contributions in the CRs after the likelihood fit to data in the VLL<sub>e</sub> SRs and CRs are comparable to those in (c). Distributions for the VLL<sub>e</sub><sup>D</sup> and VLL<sub>μ</sub><sup>D</sup> signal points for a VLL mass of 600 GeV are overlaid for comparison in (a) and (b), respectively. The lower panels show the ratio of data to the background estimate (`B.'), separately for post-fit background (black points) and pre-fit background (dashed blue line). The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band.
A search for the production of three Higgs bosons ($HHH$) in the $b\bar{b}b\bar{b}b\bar{b}$ final state is presented. The search uses $126~\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis targets both non-resonant and resonant production of $HHH$. The resonant interpretations primarily consider a cascade decay topology of $X\rightarrow SH\rightarrow HHH$ with masses of the new scalars $X$ and $S$ up to 1.5 TeV and 1 TeV, respectively. In addition to scenarios where $S$ is off-shell, the non-resonant interpretation includes a search for standard model (SM) $HHH$ production, with limits on the tri-linear and quartic Higgs self-coupling set. No evidence for $HHH$ production is observed. An upper limit of 59 fb is set, at 95% confidence level, on the cross-section for Standard-Model $HHH$ production.
Jet pairing efficiencies over the parameter space for the SM-like $(\kappa_3,\kappa_4)$ scan. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
Jet pairing efficiencies over the parameter space for the TRSM signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
Jet pairing efficiencies over the parameter space for the narrow-width heavy resonance signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $β$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.2\times10^{-48}$ cm$^{2}$ at the 90% confidence level and the best SI median sensitivity achieved is $5.1\times10^{-48}$ cm$^{2}$, both for a mass of 40 GeV/$c^2$.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
The multiplicities of positive and negative pions, kaons and unidentified hadrons produced in deep-inelastic scattering are measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the fraction of the virtual-photon energy transferred to the final-state hadron $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam of both electric charges and a liquid hydrogen target. These measurements cover the kinematic domain with photon virtuality $Q^2 > 1$ (GeV/$c)^2$, $0.004 < x < 0.4$, $0.1 < y < 0.7$ and $0.2 < z < 0.85$, in accordance with the kinematic domain used in earlier published COMPASS multiplicity measurements with an isoscalar target. The calculation of radiative corrections was improved by using the Monte Carlo generator DJANGOH, which results in up to 12% larger corrections in the low-$x$ region.
h+/h- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
pi+/pi- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
K+/K- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
We present the first forward-rapidity measurements of elliptic anisotropy of open-heavy-flavor muons at the BNL Relativistic Heavy Ion Collider. The measurements are based on data samples of Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The measurements are performed in the pseudorapidity range $1.2<|\eta|<2$ and cover transverse momenta $1<p_T<4$~GeV/$c$. The elliptic flow of charged hadrons as a function of transverse momentum is also measured in the same kinematic range. We observe significant elliptic flow for both charged hadrons and heavy-flavor muons. The results show clear mass ordering of elliptic flow of light- and heavy-flavor particles. The magnitude of the measured $v_2$ is comparable to that in the midrapidity region. This indicates that there is no strong longitudinal dependence in the quark-gluon-plasma evolution between midrapidity and the rapidity range of this measurement at $\sqrt{s_{_{NN}}}=200$~GeV.
Lastgap $v_2$
Hadron-Muon Ratio at $1.2 < |\eta| < 2.0$
HF Fraction at $1.2 < |\eta| < 2.0$ Top Tuned Slim
We report the first measurement of the azimuthal anisotropy of J$/\psi$ at forward rapidity ($1.2<|\eta|<2.2$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV at the Relativistic Heavy Ion Collider. The data were collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The second Fourier coefficient ($v_2$) of the azimuthal distribution of $J/\psi$ is determined as a function of the transverse momentum ($p_T$) using the event-plane method. The measurements were performed for several selections of collision centrality: 0%--50%, 10%--60%, and 10%-40%. We find that in all cases the values of $v_2(p_T)$, which quantify the elliptic flow of J$/\psi$, are consistent with zero. The results are consistent with measurements at midrapidity, indicating no significant elliptic flow of the J$/\psi$ within the quark-gluon-plasma medium at collision energies of $\sqrt{s_{_{NN}}}=200$ GeV.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 1], [1, 2], [2, 3], and [3, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 0.5], [0.5, 1], [1, 5], and [0, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--40% centrality with pT binned by [0, 2], [2, 5], and [5, 10] GeV/c.
In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.
The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
The $J/\psi$ and $\psi(2S)$ charmonium states, composed of $c\bar{c}$ quark pairs and known since the 1970s, are widely believed to serve as ideal probes to test quantum chromodynamics in high-energy hadronic interactions. However, there is not yet a complete understanding of the charmonium-production mechanism. Recent measurements of $J/\psi$ production as a function of event charged-particle multiplicity at the collision energies of both the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) show enhanced $J/\psi$ production yields with increasing multiplicity. One potential explanation for this type of dependence is multiparton interactions (MPI). We carry out the first measurements of self-normalized $J/\psi$ yields and the $\psi(2S)$ to $J/\psi$ ratio at both forward and backward rapidities as a function of self-normalized charged-particle multiplicity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. In addition, detailed {\sc pythia} studies tuned to RHIC energies were performed to investigate the MPI impacts. We find that the PHENIX data at RHIC are consistent with recent LHC measurements and can only be described by {\sc pythia} calculations that include MPI effects. The forward and backward $\psi(2S)$ to $J/\psi$ ratio, which serves as a unique and powerful approach to study final-state effects on charmonium production, is found to be less dependent on the charged-particle multiplicity.
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm before subtraction
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm after subtraction
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for opposite arms
A search is presented for a heavy scalar ($H$) or pseudo-scalar ($A$) predicted by the two-Higgs-doublet models, where the $H/A$ is produced in association with a top-quark pair ($t\bar{t}H/A$), and with the $H/A$ decaying into a $t\bar{t}$ pair. Events are selected requiring exactly one or two opposite-charge electrons or muons. Data-driven corrections are applied to improve the modelling of the $t\bar{t}$+jets background in the regime with high jet and $b$-jet multiplicities. These include a novel multi-dimensional kinematic reweighting based on a neural network trained using data and simulations. An $H/A$-mass parameterised graph neural network is trained to optimise the signal-to-background discrimination. In combination with the previous search performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross-section at 95% confidence level range between 14 fb and 5.0 fb for an $H/A$ with mass between 400 GeV and 1000 GeV, respectively. Assuming that both the $H$ and $A$ contribute to the $t\bar{t}t\bar{t}$ cross-section, $\tanβ$ values below 1.7 or 0.7 are excluded for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a model predicting the pair production of a colour-octet scalar, with the scalar decaying into a $t\bar{t}$ pair.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 1L region with $\geq 10$ jets and four $b$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 2LOS region with $\geq8$ jets and $\geq 4$ $𝑏$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the validation region in the 1L region with $\geq 10$ jets. These regions do not enter the fit. The post-fit background prediction is obtained using the post-fit nuisance parameters from the background-only fit in the control and signal regions.