Differential cross sections for the reaction $\gamma p \to K^{*0} \Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The \kstar was detected by its decay products, $K^+\pi^-$, in the CLAS detector at Jefferson Lab. These data are the first \kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the model's two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $\kappa$ meson exchange in $t$-channel diagrams should be investigated.
Cross sections with total uncertainties.
Cross sections with total uncertainties.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.
Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.
Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with -1 < ETARAP(C=JET) < 2.5.
These final results on e+e- -> W+W- production cross-section measurements at LEP2 use data collected by the DELPHI detector at centre-of-mass energies up to 209 GeV. Measurements of total cross-sections, W angular differential distributions and decay branching fractions, and the value of the CKM element |V_{cs}| are compared to the expectations of the Standard Model. These results supersede all values previously published by DELPHI.
W pair production cross section for the fully hadronic channel.
W pair production cross section for the semi-leptonic decay channel.
W pair production cross section for the fully leptonic decay channel.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
The exclusive photoproduction of J/psi mesons, gamma p->J/psi p, has been studied in ep collisions with the ZEUS detector at HERA, in the kinematic range 20<W<290 GeV, where W is the photon-proton centre-of-mass energy. The J/psi mesons were reconstructed in the muon and the electron decay channels using integrated luminosities of 38 pb^-1 and 55 pb^-1, respectively. The helicity structure of J/psi production shows that the hypothesis of s-channel helicity conservation is satisfied at the two standard-deviation level. The total cross section and the differential cross-section dsigma/dt, where t is the squared four-momentum transfer at the proton vertex, are presented as a function of W, for |t|<1.8 GeV^2. The t distribution exhibits an exponential shape with a slope parameter increasing logarithmically with W with a value b=4.15 \pm 0.05 (stat.)^{+0.30}_{-0.18} (syst.) GeV^-2 at W=90 GeV. The effective parameters of the Pomeron trajectory are alphapom(0) = 1.200 \pm 0.009(stat.)^{+0.004}_{-0.010}(syst.) and alphappom= 0.115 \pm 0.018(stat.)^{+0.008}_{-0.015}(syst.) GeV^-2.
The total exclusive J/PSI photoproduction cross section, the differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence as afunction of W, the photon-proton c.m. energy, for data from J/PSI muon decay.
The total exclusive J/PSI photoproduction cross section as a function of W,the photon-proton c.m. energy, for data from J/PSI electron decays.
The differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence for exclusive J/PSI photoproduction as a function of W, the photon-proton c.m. energy for data from J/PSI electron decays.
The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.
Measured cross section as a function of COS(THETA*), where THETA* is the dijet angle in the parton-parton c.m. frame. The data are shown in two X(C=GAMMA) regions.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. -1 < ETARAP(JET1) < 0. -1 < ETARAP(JET2) < 0.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. 0 < ETARAP(JET1) < 1. -1 < ETARAP(JET2) < 0.
An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.
No description provided.
No description provided.
No description provided.
The cross section for the photoproduction of events containing three jets with a three-jet invariant mass of M_3J > 50 GeV has been measured with the ZEUS detector at HERA. The three-jet angular distributions are inconsistent with a uniform population of the available phase space but are well described by parton shower models and O(alpha alpha_s^2) pQCD calculations. Comparisons with the parton shower model indicate a strong contribution from initial state radiation as well as a sensitivity to the effects of colour coherence.
Cross section in the specified kinematic range.
The measured 3-jet cross-section w.r.t. the 3-jet invariant mass.
The measured distribution in THETA(P=3).