The measurement of the production of deuterons, tritons and $^{3}\mathrm{He}$ and their antiparticles in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented in this article. The measurements are carried out at midrapidity ($|y| < $ 0.5) as a function of collision centrality using the ALICE detector. The $p_{\rm T}$-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.
Deuteron spectrum in 0-5% V0M centrality class
Antideuteron spectrum in 0-5% V0M centrality class
Deuteron spectrum in 5-10% V0M centrality class
The study of the production of nuclei and antinuclei in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper, the production of protons, deuterons and $^3$He and their charge conjugates at midrapidity is studied as a function of the charged-particle multiplicity in inelastic pp collisions at $\sqrt{s}=5.02$ TeV using the ALICE detector. Within the uncertainties, the yields of nuclei in pp collisions at $\sqrt{s}=5.02$ TeV are compatible with those in pp collisions at different energies and to those in p-Pb collisions when compared at similar multiplicities. The measurements are compared with the expectations of coalescence and Statistical Hadronisation Models. The results suggest a common formation mechanism behind the production of light nuclei in hadronic interactions and confirm that they do not depend on the collision energy but on the number of produced particles.
(Anti)proton spectrum in V0M multiplicity class I
(Anti)proton spectrum in V0M multiplicity class II
(Anti)proton spectrum in V0M multiplicity class III
Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at $\sqrt{s} = 13$ TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters $B_2$ for deuterons and $B_3$ for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.
(Anti)proton spectrum in HM V0M multiplicity class
(Anti)proton spectrum in HM I V0M multiplicity class
(Anti)proton spectrum in HM II V0M multiplicity class
In this letter, the production of deuterons and anti-deuterons in pp collisions at $\sqrt{s} = 7$ TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum ($p_{\rm{T}}$). The measurements are discussed in the context of hadron-coalescence models. The coalescence parameter $B_{2}$, extracted from the measured spectra of (anti-)deuterons and primary (anti-)protons, exhibits no significant $p_{\rm{T}}$-dependence for $p_{\rm{T}} < 3$ GeV/$c$, in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per nucleon, the $B_{2}$ parameter is found to decrease smoothly from low multiplicity pp Pb-Pb collisions, in qualitative agreement with more elaborate coalescence models. The measured mean transverse momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that simultaneously describe pion, kaon and proton spectra, in contrast to central Pb-Pb collisions. The ratio between the $p_{\rm{T}}$-integrated yield of deuterons to protons, d/p, is found to increase with the charged-particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp collisions at the LHC.
Transverse-momentum spectra of deuterons and anti-deuterons measured at mid-rapidity in V0M multiplicity class I+II
Transverse-momentum spectra of deuterons and anti-deuterons measured at mid-rapidity in V0M multiplicity class III
Transverse-momentum spectra of deuterons and anti-deuterons measured at mid-rapidity in V0M multiplicity class IV+V