Cross sections and charged multiplicity distributions forK+p interactions at 70 GeV/c are presented and compared withK+p data at other energies. Comparisons are also made with available π+p,pp, andK−p data.
No description provided.
The proton-antiproton total cross section was measured at the center-of-mass energy of s = 541 GeV at the S p pS at CERN using a luminosity dependent method. The result σ tot =63.0±2.1 mb is in agreement with the luminosity independent measurement performed earlier by the UA4 Collaboration.
No description provided.
The proton-antiproton total cross section was measured at the CM energy √s = 546 GeV . The result is σ tot = 61.9± 1.5 mb . The ratio of the elastic to the total cross section is σ e ℓ / σ tot = 0.215±0.005. A comparison to the lower energy data shows that the increase of the total cross section with energy is very close to a log 2 s behaviour.
RATIO OF ELASTIC TO TOTAL CROSS SECTION.
Proton-antiproton elastic scattering at CM energy 540 GeV has been studied in the t -range 0.04 < − t < 0.45 GeV 2 . The data are well fitted by the form exp ( bt ) with b = 17.1 ± 1.0 GeV −2 for | t | = 0.04 − 0.18 GeV su 2 and b = 13.7 ± 0.2 ± 0.2 GeV −2 for | t | = 0.21−0.45 GeV 2 . A luminosity measurement combined with the optical theorem gives σ tot = 67.6 ± 5.9 ± 2.7 mb and σ e1 / σ tot = 0.209 ± 0.018 ± 0.008.
No description provided.
No description provided.
ELASTIC RATIO ASSUMES RHO=0.
We measured the elastic scattering of αα at s = 126 GeV and of α p at s = 89 GeV . For αα , the differential cross section d σ /d t has a diffractive pattern minima at | t | = 0.10 and 0.38 GeV 2 . At small | t | = 0.05−0.07 GeV 2 , this cross section behaves like exp[(100 ± 10) t ]. Extrapolating a fit to the data to the optical point, we obtained for the total cross section α tot ( αα ) = 250 ± 50 mb and an integrated elastic cross section σ e1 ( αα ) = 45 ± mb. Another method of estimating σ tot ( αα ), based on measuring the interaction rate, yielded 295 ± 40 mb. For α p, d σ /d t has aminimum at | t | = 0.20 GeV 2 , and for 0.05 < | t | < 0.18 GeV 2 behaves like exp[(41 ± 2) t ]. Extrapolating this slope to | t | = 0, we found σ tot ( α p) = 130 ± 20 and σ e1 ( α p) = 20 ± 4mb. Results on pp elastic scattering at s = 63 GeV agree with previous ISR experiments.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
METHOD 1 FOR SIG IS USING OPTICAL THEOREM. METHOD 2 FOR SIG IS BASED ON THE MEASURED LUMINOSITY-MONITOR CROSS SECTIONS.
None
No description provided.
The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
Topological and channel cross sections are given for annihilation and inelastic final states produced in p p interactions at 9.1 GeV/c. Cross sections for prominent resonances in specific channels and charged pion, ϱ 0 and Δ ++ inclusive cross sections are also presented.
FITTED FORWARD D(SIG)/DT = 153 +- 8 MB/GEV**2.
No description provided.
Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.
No description provided.
No description provided.
No description provided.
pp interactions at 11 momenta in the range 0.9 to 2.0 GeV/ c have been studied. The elastic angular distributions, covering the c.m. angular range 22°–90°, agree in general with Hoshizaki's phase-shift analysis which shows the looping 1 D in and 3 F 3 amplitudes in the Argand diagram. About 80% of pn π + events come from the n Δ ++ state at all momenta above 1.2 GeV/ c . The behavior of the density matrix elements of the Δ ++ show no momentum or angular dependence. A large fraction of pp π 0 events also come from the p Δ + state at all momenta above 1.2 GeV/ c . The behavior of the Δ + density matrix elements is similar to that for the case of Δ ++ .
No description provided.