Single $\pi^0$ Production Off Neutrons Bound in Deuteron with Linearly Polarized Photons

The A2 at MAMI collaboration Mullen, C. ; Gardner, S. ; Glazier, D.I. ; et al.
Eur.Phys.J.A 57 (2021) 205, 2021.
Inspire Record 1851649 DOI 10.17182/hepdata.127968

The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.

12 data tables match query

Photon beam asymmetry Sigma at W= 1.2711 GeV

Photon beam asymmetry Sigma at W= 1.2858 GeV

Photon beam asymmetry Sigma at W= 1.3003 GeV

More…

Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables match query

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…

Cross Section for $\gamma n \to \pi^0 n$ measured at Mainz/A2

The A2 collaboration Briscoe, W.J. ; Hadžimehmedović, M. ; Kudryavtsev, A.E. ; et al.
Phys.Rev.C 100 (2019) 065205, 2019.
Inspire Record 1748263 DOI 10.17182/hepdata.116236

The $\gamma n \to \pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nuclear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $\gamma n \to \pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* \to \gamma n$ at the resonance poles are determined for the first time.

21 data tables match query

Excitation function at pion c.m. angle THETA=18 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=32 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

Excitation function at pion c.m. angle THETA=41 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.

More…

Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

41 data tables match query

The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.

The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

More…

The Threshold Photoproduction of pi0 on Nucleons and on Few Nucleon Systems

Argan, P. ; Audit, G. ; Bloch, A. ; et al.
Phys.Lett.B 206 (1988) 4, 1988.
Inspire Record 251858 DOI 10.17182/hepdata.29971

The absolute value of the π 0 photoproduction cross section on the proton recently measured near threshold enables to reanalyze previous data collected on 2 H, 3 He, and 4 He relatively to the proton. Absolute cross sections are presented for these nuclei in the energy region extending up to 10 MeV above threshold. The threshold s-wave amplitudes for 2 H and 3 He thus obtained are discussed in relation with the neutron threshold amplitude E ( nπ 0 ) 0+ value.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Recoil Proton Polarization in Elastic $\pi^-p$ Scattering at $T_\pi=410$ and 492 MeV

Bareyre, P. ; Bricman, C. ; Longo, M.J. ; et al.
Phys.Rev.Lett. 14 (1965) 878-880, 1965.
Inspire Record 945162 DOI 10.17182/hepdata.21824

None

2 data tables match query

No description provided.

No description provided.


Measurement of the reaction C-12 (muon-neutrino, mu-) X near threshold

The LSND collaboration Albert, M. ; Athanassopoulos, C. ; Auerbach, L.B. ; et al.
Phys.Rev.C 51 (1995) 1065-1069, 1995.
Inspire Record 378770 DOI 10.17182/hepdata.25973

The reaction $~{12}{\rm C}(\nu_\mu,\mu~-) {\rm X}$ has been measured near threshold using a $\pi ~+$ decay-in-flight $\nu_\mu$ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region $123.7 < {\rm E}_\nu < 280$ MeV, the measured spectral shape is consistent with that expected from the Fermi Gas Model. However, the measured flux--averaged inclusive cross section ($(8.3 \pm 0.7 {\rm stat.} \pm 1.6 {\rm syst.}) \times 10~{-40} {\rm cm}~2$) is more than a factor of 2 lower than that predicted by the Fermi Gas Model and by a recent random phase approximation calculation.

1 data table match query

No description provided.


Jets of nuclear matter in He-A(T) inelastic collisions at 4.5-A-GeV/c.

Besliu, C. ; Jipa, A. ; Zaharia, R. ; et al.
Eur.Phys.J.A 1 (1998) 65-75, 1998.
Inspire Record 467239 DOI 10.17182/hepdata.43769

The problem of the nuclear matter jets in nucleus-nucleus collisions at 4.5 A GeV/c is discussed. The global analysis of experimental data, namely the sphericity tensor, is used to evidence such jets.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of Spin-Density Matrix Elements for $\phi$-Meson Photoproduction from Protons and Deuterons Near Threshold

The LEPS collaboration Chang, W.C. ; Ahn, D.S. ; Ahn, J.K. ; et al.
Phys.Rev.C 82 (2010) 015205, 2010.
Inspire Record 859164 DOI 10.17182/hepdata.55768

The LEPS/SPring-8 experiment made a comprehensive measurement of the spin-density matrix elements for $\gamma p \to \phi p$, $\gamma d \to \phi p n$ and $\gamma d \to \phi d$ at forward production angles. A linearly polarized photon beam at $E_{\gamma}$=1.6-2.4 GeV was used for the production of $\phi$ mesons. The natural-parity Pomeron exchange processes remains dominant nearthreshold. The unnatural-parity processes of pseudoscalar exchange is visible in the production from nucleons but is greatly reduced in the coherent production from deuterons. There is no strong $E_{\gamma}$-dependence, but some dependence on momentum-transfer. A small but finite value of the spin-density matrix elements reflecting helicity-nonconserving amplitudes in the $t$-channel is observed.

81 data tables match query

Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables match query

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…