Date

Version 2
Search for a heavy resonance decaying into a Z and a Higgs boson in events with an energetic jet and two electrons, two muons, or missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 089, 2025.
Inspire Record 2847311 DOI 10.17182/hepdata.153397

A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.

16 data tables

The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.

The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.

Distributions in $m_{Z'}^{rec}$ for data in the SRs, together with fits of the background functions under the background-only hypothesis for the muon channel. The number of observed events in each bin is divided by the bin width. The signal predictions are shown for different Z' boson masses, normalized to an arbitrary cross section of 1 fb. In the panels below the distributions, the ratios of data to the background function are displayed. The shaded green areas represent the statistical uncertainty from the fit. The $\chi^2$ values per number of degrees of freedom ($\chi^2$/n.d.f.) and the corresponding $p$-values are provided for each fit.

More…

Search for pair production of heavy particles decaying to a top quark and a gluon in the lepton+jets final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 85 (2025) 342, 2025.
Inspire Record 2844507 DOI 10.17182/hepdata.155498

A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.

4 data tables

Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.

Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.

Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.

More…

Measurement of the $\mathrm{t\bar{t}}$H and tH production rates in the H $\to$$\mathrm{b\bar{b}}$ decay channel using proton-proton collision data at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 097, 2025.
Inspire Record 2808025 DOI 10.17182/hepdata.152799

An analysis of the production of a Higgs boson ($H$) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}H$) or a single top quark ($tH$) is presented. The Higgs boson decay into a bottom quark-antiquark pair ($H \to\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}H$ production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}H$ production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3 $^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}H$ and $tH$ production rates, and the results are combined with those obtained in other Higgs boson decay channels.

14 data tables

Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.

Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.

Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.

More…

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 109 (2024) L111101, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb$^{-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1 $^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst)] $\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 052004, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $\to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

23 data tables

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.

More…

Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $\mu\mu$bb and $\tau\tau$bb final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 84 (2024) 493, 2024.
Inspire Record 2760544 DOI 10.17182/hepdata.145999

A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}_1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m_{\mathrm{a}_1}$ and are observed to be in the range (0.17-3.3) $\times$ 10$^{-4}$ and (1.7-7.7) $\times$ 10$^{-2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m_{\mathrm{a}_1}$ values between 15 and 60 GeV.

4 data tables

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \mu\mu$bb) as functions of $m_{\text{a}_{1}}$. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \tau\tau$bb) in percent as functions of $m_{\text{a}_{1}}$, for the combination of the $\mu\tau_{\text{h}}$, $e\tau_{\text{h}}$, and $e\mu$ channels. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow ll$bb) in percent, where $l$ stands for muons or $\tau$ leptons, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions $m_{\text{a}_{1}}$ for 2HDM+S models, independent of the type and tan $\beta$ parameter. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

More…

Search for central exclusive production of top quark pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV with tagged protons

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2024) 187, 2024.
Inspire Record 2140837 DOI 10.17182/hepdata.127701

A search for the central exclusive production of top quark-antiquark pairs ($\mathrm{t\bar{t}}$) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$^{-1}$. The $\mathrm{t\bar{t}}$ decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.

1 data table

Expected and observed 95% confidence level (CL) upper limits for the cross section of $\mathrm{pp} \rightarrow \mathrm{p t \bar{t} p}$, for the dilepton and $\ell+$jets channels separately and combined. The green and yellow bands show the 68 and 95% intervals, respectively, for the expected upper limit.


Search for a third-generation leptoquark coupled to a $\tau$ lepton and a b quark through single, pair, and nonresonant production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2024) 311, 2024.
Inspire Record 2688366 DOI 10.17182/hepdata.141707

A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.

20 data tables

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $S_\mathrm{T}^\mathrm{MET} > 800\,\mathrm{GeV}$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $\chi < 4$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.

More…

Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 84 (2024) 27, 2024.
Inspire Record 2685711 DOI 10.17182/hepdata.141611

The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.

13 data tables

Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets

More…

Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 041802, 2024.
Inspire Record 2661228 DOI 10.17182/hepdata.140434

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

6 data tables

Definition of ABCD bins and yields in data, per match category. The predicted yield in the bin with the smallest backgrounds (bin D) is extracted from the simultaneous four-bin fit by assuming zero signal, which corresponds to $(\text{Obs. B} \times \text{Obs. C}) / (\text{Obs. A})$ in this limit.

Systematic uncertainties in the analysis. The jet uncertainties are larger in 2017 because of noise issues with the ECAL endcap. The tracking inefficiency in 2016 is caused by the unexpected saturation of photodiode signals in the tracker.

Simulated muon reconstruction efficiency of standard (blue squares) and displaced (red circles) reconstruction algorithms as a function of transverse vertex displacement $v_{xy}$. The two dashed vertical gray lines denote the ends of the fiducial tracker and muon detector regions, respectively.

More…