We present results of complete measurements of the two-prong events observed in a 50 000-picture exposure of the 30-in. hydrogen bubble chamber to a 205−GeVc proton beam at the National Accelerator Laboratory. Using kinematic fitting, elastic and inelastic events are separated and cross sections are obtained. The total two-prong cross section is measured to be 9.77 ± 0.40 mb, of which 2.85 ± 0.26 mb represents the inelastic contribution. The total elastic cross section is measured to be 6.92 ± 0.44 mb. Our data are consistent with the break in dσdt at |t|∼0.1−0.2 (GeVc)2 observed at the CERN ISR. A prominent low-mass enhancement is observed in the distribution of missing mass squared from the slow proton for the inelastic events. An analysis based on the missing-mass spectrum and the particle rapidities shows that this low-mass enhancement accounts for about 77% of the total inelastic two-prong cross section. The diffractive cross section in the two-prong events is 2.20 ± 0.25 mb, in agreement with certain two-component models.
USING A TOTAL CROSS SECTION OF 39.0 +- 1.0 MB.
No description provided.
None
No description provided.
The charged-particle multiplicity distribution in 205−GeVc proton-proton interactions is presented. In addition, the total diffractive contributions to each charged multiplicity are estimated assuming a factorizable Pomeron.
THE TOTAL CROSS SECTION NORMALIZATION COMES FROM THIS AND OTHER EXPERIMENTS.
K + p elastic scattering is studied at incident K + beam momenta of 2.53, 2.76 and 3.20 GeV/ c . From the analysis of about 10 000 elastic events at each energy, we present data on the forward and backward elastic scattering peaks. No structure is observed in the forward peak for − t ⩽ 2 (GeV/ c ) 2 . In addition, the statistics available from this exposure permit a measurement of the differential cross sections near 90° in the center of mass system. These results exhibit a strong energy dependence and are compared to similar results at other energies.
No description provided.
No description provided.
THE QUOTED ERRORS ARE STATISTICAL.
Baryon resonance production in quasi-two-body reactions has been studied for the channels K + p→K°p π + , K + n π + and K + p π ° at beam momenta of 2.53, 2.76 and 3.20 GeV/ c . The production cross sections, four-momentum transfer distributions and density matrix elements are given for the Δ(1236), N ∗ (1400), N ∗ (1500) and N ∗ (1680) states. The reaction K + p→K° Δ ++ (1236) is compared to the line reversed reaction K − n → K °Δ − and the charge-exchange SU(3) sum rule for pseudo-scalar meson plus Δ(1236) is tested.
No description provided.
Based on 150 000 photographs taken at the ZGS with the 30 inch deuterium-filled chamber we present an analysis of the elastic p d scattering reaction. Due to unrecoreded small deuteron recoils we were only able to measure the elastic cross section in the four-momentum region | t | > 0.03 (GeV/ c ) 2 . Extrapolation towards small | t | by two different methods gave us two compatible estimates of the total elastic cross section. The differential cross section was analyzed by means of the Glauber formalism both with and without the effects due to the D-wave part of the deuteron wave function. The differential cross sections of np at 5.4 GeV/ c and pn deduced from our data were compared and exhibit a crossover phenomenon.
CALCULATED USING TOTAL ELASTIC SIG(-T > 0.03 GEV**2) = 7.2 +- 0.4. THE SMALL ANGLE SCATTERING APPROXIMATION HOLDS: D(SIG)/DOMEGA(RF=LAB) = (P**2/PI)*D(SIG)/DT.
INTEGRATED CROSS SECTION USING EITHER EXPONENTIAL EXTRAPOLATION OR GLAUBER MODEL FIT FOR -T < 0.03 GEV**2.
We present results of an analysis of two-prong events for elastic scattering and single-pion production in K−p interactions at 5.5 GeVc. The resonance parameters for the charged and neutral K*(890) and K*(1420) are determined and the observed production and decay properties of the charged and neutral K*(890) are compared with the theoretical predictions of an absorptive one-particle-exchange model and a Regge model. The K*(1420) differential cross section and density-matrix elements are presented and the question of whether more than one resonance exists in this mass range is considered. A search for resonance effects at Kπ mass beyond 1500 MeV is made. In particular, the recently reported state at 1800 MeV is discussed. A B5-model analysis of the reaction K−p→K¯0π−p is also presented.
NORMALIZED TO SIG(K- P --> ANYTHING) OF 24.3 +- 0.8 MB.
FORWARD CROSS SECTION OPTICAL POINT FROM TWO PARAMETER EXPONENTIAL FIT OVER 0.12 < -T < 0.68 GEV**2.
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176<W<225$ GeV and for masses of the dissociated photon system $4<M_X<32$ GeV, the $t$ distribution has an exponential shape, $dN/d|t| \propto \exp{(-b|t|)}$, with a slope parameter $b=6.8 \pm 0.9$~(stat.)~$ ^{+1.2}_{-1.1}$~(syst.)~GeV$^{-2}$.
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
Results are reported on a high statistics study of Bhabha scattering at 29 GeV in the polar angle region, |cos θ | < 0.55. The data are consistent with the standard model, and measure vector and axial-vector coupling constants of g v 2 = 0.03 ± 0.09 and g a 2 = 0.46±0.14. Limits on the QED-cutoff parameters are Λ + > 154 GeV and Λ - > 220 GeV. Lower limits on scale parameters of composite models are in the range 0.9–2.8 TeV. The partial width of a hypothetical spin-zero boson decaying to e + e − has an upper limit which varies from 6 to 57 MeV corresponding to a boson mass in the range 45–80 GeV/ c 2 .
No description provided.