None
No description provided.
No description provided.
No description provided.
A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.
Forward-backward asymmetry.
The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.
Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.
Parton jet $p_T$ vs $A_{LL}$ values with associated uncertainties.
Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology A.
Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology B.
DATA FOR EVENTS WITHOUT PARTICLES WITH PT > .8 GEV.
DATA FOR EVENTS WITH ONE PARTICLE WITH PT > .8 GEV.
DATA FOR EVENTS WITH TWO OR MORE PARTICLES WITH PT > .8 GEV.
We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).
No description provided.
The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exclusive and electroweak interference effects of total-state radiation.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
None
No description provided.
We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.
Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $0.5<|\eta|<1$.
Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $|\eta|<0.5$.
Parton dijet invariant mass $M_{inv}$ and $A_{LL}$ values with associated uncertainties for the $\textrm{sign}(\eta_1) = \textrm{sign}(\eta_2)$ topology.