Double differential cross sections have been measured for pi+ and K+ emitted around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15 GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an alpha projectile instead of a deuteron whereas the K+ yield increases by a factor of about 4. According to transport calculations, the K+ enhancement depends both on the number of hadron-hadron collisions and on the energy available in those collisions: their center-of-mass energy increases with increasing number of projectile nucleons.
The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is PI+ kinectic energy in the nucleon-nucleon center of mass frame.
The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is K+ kinectic energy in the nucleon-nucleon center of mass frame.
Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.
No description provided.
No description provided.
No description provided.
The double strangeness exchange reaction ( K − , K + ) is investigated with respect to the sub-threshold production of scalar and vector mesons ( f 0 / a 0 / φ ) decaying into K + K − and the two-step processes induced by intermediate mesons and Ξ − hyperons at p k − = 1.66 GeV/ c using a scintillating fiber active target. The differential cross section ( 〈 dσ dΩ L 〉) averaged over the angular interval (2.3° ⩽ θ K + L ⩽ 14.7°) for the sub-threshold f 0 / a 0 / φ meson production with the K + K − decay is 11 ± 6 μ b/sr at 0.6 ⩽ p K 1 < 0.95 GeV/ c . The present result differs significantly from the theoretical calculation which predicts the contribution of the f 0 / a 0 / φ meson production to be predominant in the ( K − , K + ) reaction below p K + = 0.95 GeV/ c . We found a sizable contribution from two-step ( K − , K + processes, characterized by production of two S = −1 hyperons, consistent with the result of the intra-nuclear cascade (INC) model calculation with respect to the meson-induced hyperon (or hyperon resonance) pair production in the momentum region 0.6 ⩽ p K + < 0.95 GeV/ c . The observed enhancement of the cross section for the two-step ΛΛ production beyond the prediction of the INC model at p K + ⋍ 1.1 GeV /c could be due to the Ξ − p → ΛΛ reaction in 12 C.
No description provided.
No description provided.
No description provided.
Bhabha scattering at a center-of-mass energy of 57.77 GeV has been measured using the VENUS detector at KEK TRISTAN. The precision is better than 1% in scattering angle regions of |cosθ|⩽0.743 and 0.822⩽cosθ⩽0.968. A model-independent scattering-angle distribution is extracted from the measurement. The distribution is in good agreement with the prediction of the standard electroweak theory. The sensitivity to underlying theories is examined, after unfolding the photon-radiation effect. The q2 dependence of the photon vacuum polarization, frequently interpreted as a running of the QED fine-structure constant, is directly observed with a significance of three standard deviations. The Z0 exchange effect is clearly seen when the distribution is compared with the prediction from QED (photon exchanges only). The agreement with the standard theory leads us to constraints on extensions of the standard theory. In all quantitative discussions, correlations in the systematic error between angular bins are taken into account by employing an error matrix technique.
Cross section is integrated over the cos(theta ) bin.
The production of η′ (958) and φ (1020) mesons has been studied very close to threshold in the inclusive p d → 3 He X reaction. The complicated phase space acceptance problem caused by rapidly changing kinematics close to threshold has been carefully treated. The measured averaged squared amplitudes | f | 2 at threshold are 0.9 and 2.4 nb/sr for the η′ and φ meso Our results are in remarkable agreement with predictions of a two-step model, which uses existing π − p → n X data as input. However the ratio of φ to ω production seems at variance with naïve expectations based on the Okubo-Zweig-Iizuka rule.
No description provided.
We have studied the process e+e− → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb−1 we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e+e− → γγ(γ) in the polar range 16° < θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.
Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.
No description provided.
Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.
No description provided.
Axis error includes +- 2.3/2.3 contribution.
Axis error includes +- 2.3/2.3 contribution.
pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.
No description provided.
No description provided.
No description provided.
Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.
No description provided.
No description provided.
No description provided.
A new measurement of the differential cross section and of the analysing power A 0 n of the charge-exchange reaction p − p → n − n at 875 MeV/ c is presented. The A 0 n data cover the entire angular range and constitute a considerable improvement over previously published data, both in the forward and in the backward hemisphere. The cross-section data cover only the backward region, but are unique at this energy. A careful study of the long-term drifts of the apparatus has allowed to fully exploit the good statistics of the data.
Forward hemisphere measurement. Additional systematic error of 4 pct due to target polarization uncertainty.
Backward hemisphere measurement. Additional systematic error of 15 pct.
Differential cross section in the backward hemisphere. Additional systematic error of 15 pct.