The invariant double-differential cross section, E 1 E 2 d 6 σ / d p 3 1 d p 3 2 , and the double-spin asymmetry, A LL , for inclusive multi-γ pair production in which γ-rays came from neutral mesons were measured with a 200 GeV / c longitudinally-polarized proton beam and a longitudinally-polarized proton target. Most of the multi-γ pairs comes from two-jet type events which are sensitive to partonic interaction. The A LL values were found to be consistent with zero. The invariant double-differential cross section for inclusive π 0 π 0 production was also measured. These measured cross sections are consistent with LUND Monte Carlo simulations. Using the LUND Monte Carlo simulation package with the Carlitz-Kaur model of spin dependent distribution functions of valence quarks, the A LL values have been compared with theoretical predictions of gluon polarization, ΔG / G . The results put restrictions on the size of ΔG / G in the region of 0.05 ⪅ x ⪅ 0.35.
No description provided.
No description provided.
No description provided.
The φπ + /ωπ + ratio from n¯p annihilations on a liquid hydrogen target, for n¯ momenta between 64 and 297 MeV/ c , was measured using the OBELIX spectrometer at LEAR. The ratio R(ϕπ/ωπ)=σ(n¯p→ϕπ+)/σ(n¯p→ωπ+) turned out 0.110±0.015 stat ±0.006 syst . Implications of this result on the OZI rule are discussed.
Assumes branching ratios of (49.1 +- 0.8)% for phi --> K+ K- and (88.8 +- 0.6)% for omega --> pi+ pi- pi0.
We study the polarization with respect to the normal to the production plane for a very clean sample of 27217 Λ 0 / Λ 0 hyperons produced in 230 GeV/ c π − Cu interactions. In general we find P(Λ 0 ) ≈ P( Λ 0 ap; 0 except for x F > 0, p T > 1GeV/ c where P ( Λ 0 ) = −0.28±0.09(stat.)±0.02(syst.).
No description provided.
No description provided.
No description provided.
The production of neutral pions has been studied in the reactions 40 Ar + nat Ca , 86 Kr + nat Zr and 197 Au + 197 Au at 1 A GeV. For high energy pions emitted from the heavier systems a steeper than linear rise of the pion multiplicity with the centrality of the reaction is observed, indicating a pion production process other than binary nucleon-nucleon collisions. At low transverse momenta an enhancement of the π 0 -multiplicity increasing with the mass of the collision system is found. Systematic discrepancies between the experimental results and recent BUU, QMD and Cascade calculations are discussed.
No description provided.
RESULTS OF AN EXTRAPOLATION TO THE FULL SOLID ANGLE TAKING THE EXPERIMENTALTEMPERATURES INTO ACCOUNT.
No description provided.
Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
Annihilation cross-sections σann for antineutrons on some nuclei (C, Al, Cu, Sn and Pb) at three antineutron momenta (180, 240 and 280 MeV/c) were measured at LEAR (CERN) with the OBELIX spectrometer. A behaviour σann=σ0Aν has been found withν≈2/3. The data are discussed following some models for antineutron-nucleus interaction.
No description provided.
No description provided.
No description provided.
None
CROSS SECTION WAS ESTIMATED ASSUMING IT'S INDEPENDENCE OF THE ANTIPROTON M OMENTUM.
A new method to study the nuclear periphery using antiproton annihilation was applied to nine isotopes with mass numbers between 58 and 238. The method makes use of the detection of the radioactive annihilation products one unit lower in mass number than the target. A clear neutron halo effect, strongly correlated with the neutron binding energy, was observed in some nuclei. The experimental results are in qualitative agreement with calculations of proton and neutron densities at the nuclear periphery based on either a simple asymptotic density model or a more complex Hartree-Fock approach.
No description provided.
No description provided.
A(FRAGT)=A(TARGET)-1.
We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.
Forward--backward asymmetry summed over all flavours of quarks.
Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.
No description provided.
No description provided.
Here X=E(hadron)/E(beam).