Transverse single-spin asymmetry of midrapidity $\pi^{0}$ and $\eta$ mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=$ 200 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 112004, 2023.
Inspire Record 2641468 DOI 10.17182/hepdata.139098

Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.

2 data tables

Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.

Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.


Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.


Nonprompt direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
336 authors from 71 institutions, 26 pages, 30 figures, 4 tabels, 2014 data. Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html, 2022.
Inspire Record 2061074 DOI 10.17182/hepdata.129292

The measurement of the direct-photon spectrum from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV is presented by the PHENIX collaboration using the external-photon-conversion technique for 0%--93% central collisions in a transverse-momentum ($p_T$) range of 0.8--10 GeV/$c$. An excess of direct photons, above prompt-photon production from hard-scattering processes, is observed for $p_T<6$ GeV/$c$. Nonprompt direct photons are measured by subtracting the prompt component, which is estimated as $N_{\rm coll}$-scaled direct photons from $p$ $+$ $p$ collisions at 200 GeV, from the direct-photon spectrum. Results are obtained for $0.8<p_T<6.0$ GeV/$c$ and suggest that the spectrum has an increasing inverse slope from ${\approx}0.2$ to 0.4 GeV/$c$ with increasing $p_T$, which indicates a possible sensitivity of the measurement to photons from earlier stages of the evolution of the collision. In addition, like the direct-photon production, the $p_T$-integrated nonprompt direct-photon yields also follow a power-law scaling behavior as a function of collision-system size. The exponent, $\alpha$, for the nonprompt component is found to be consistent with 1.1 with no apparent $p_T$ dependence.

9 data tables

Direct photon $R_{\gamma}$, every 20% centrality

Direct photon $R_{\gamma}$, every 10% centrality

Invariant yield of direct photons, every 10% centrality

More…

Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p, p$+Au $d$+Au, and $^3$He + Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024907, 2023.
Inspire Record 2054927 DOI 10.17182/hepdata.136560

Recently, the PHENIX Collaboration has published second- and third-harmonic Fourier coefficients $v_2$ and $v_3$ for midrapidity ($|\eta|<0.35$) charged hadrons in 0%--5% central $p$$+$Au, $d$ $+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV utilizing three sets of two-particle correlations for two detector combinations with different pseudorapidity acceptance [Phys. Rev. C {\bf 105}, 024901 (2022)]. This paper extends these measurements of $v_2$ to all centralities in $p$ $+$Au, $d$ $+$Au, and $^3$He$+$Au collisions, as well as $p$$+$$p$ collisions, as a function of transverse momentum ($p_T$) and event multiplicity. The kinematic dependence of $v_2$ is quantified as the ratio $R$ of $v_2$ between the two detector combinations as a function of event multiplicity for $0.5$ $<$ $p_T$ $<$ $1$ and $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$. A multiphase-transport (AMPT) model can reproduce the observed $v_2$ in most-central to midcentral $d$$+$Au and $^3$He$+$Au collisions. However, the AMPT model systematically overestimates the measurements in $p$ $+$ $p$, $p$ $+$Au, and peripheral $d$$+$Au and $^3$He$+$Au collisions, indicating a higher nonflow contribution in AMPT than in the experimental data. The AMPT model fails to describe the observed $R$ for $0.5$ $<$ $p_T$$<$ $1$ GeV/$c$, but there is qualitative agreement with the measurements for $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$.

18 data tables

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

More…

Study of $\phi$-meson production in $p+$Al, $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 106 (2022) 014908, 2022.
Inspire Record 2050486 DOI 10.17182/hepdata.130267

Small nuclear collisions are mainly sensitive to cold-nuclear-matter effects; however, the collective behavior observed in these collisions shows a hint of hot-nuclear-matter effects. The identified-particle spectra, especially the $\phi$ mesons which contain strange and antistrange quarks and have a relatively small hadronic-interaction cross section, are a good tool to study these effects. The PHENIX experiment has measured $\phi$ mesons in a specific set of small collision systems $p$$+$Al, $p$$+$Au, and $^3$He$+$Au, as well as $d$$+$Au [Phys. Rev. C {\bf 83}, 024909 (2011)], at $\sqrt{s_{_{NN}}}=200$ GeV. The transverse-momentum spectra and nuclear-modification factors are presented and compared to theoretical-model predictions. The comparisons with different calculations suggest that quark-gluon plasma may be formed in these small collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. However, the volume and the lifetime of the produced medium may be insufficient for observing strangeness-enhancement and jet-quenching effects. Comparison with calculations suggests that the main production mechanisms of $\phi$ mesons at midrapidity may be different in $p$$+$Al versus $p/d/$$^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. While thermal quark recombination seems to dominate in $p/d/$$^3$He$+$Au collisions, fragmentation seems to be the main production mechanism in $p$$+$Al collisions.

2 data tables

Invariant transverse momentum spectra measured for $\phi$ mesons in (a) $p$+Al, (b) $p$+Au, and (c) $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity.

Comparison of $\phi$-meson nuclear-modification factors in $p$+Al, $p$+Au, $d$+Au [2], and $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity. The normalization uncertainty from $p$+$p$ of about $9.7 \%$ is not shown [28].


Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p$ $+$ $p$, $p$ $+$ Al, and $p$ $+$ Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.C 105 (2022) 064912, 2022.
Inspire Record 2029951 DOI 10.17182/hepdata.130200

Suppression of the $J/\psi$ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the $\psi(2S)$ state in $p/d$ $+$ $A$ collisions suggested the presence of final-state effects. Results of $J/\psi$ and $\psi(2S)$ measurements in the dimuon decay channel are presented here for $p$ $+$ $p$, $p$ $+$Al, and $p$ $+$Au collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. The results are predominantly shown in the form of the nuclear-modification factor, $R_{pA}$, the ratio of the $\psi(2S)$ invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in $p$ $+$ $p$ collisions. Measurements of the $J/\psi$ and $\psi(2S)$ nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large-Hadron-Collider energies.

12 data tables

PSI(2S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI(1S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

PSI(2S)-->MU+MU- nuclear modification in p+Al collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Transverse-single-spin asymmetries of charged pions at midrapidity in transversely polarized $p{+}p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 105 (2022) 032003, 2022.
Inspire Record 1988071 DOI 10.17182/hepdata.129284

In 2015, the PHENIX collaboration has measured single-spin asymmetries for charged pions in transversely polarized proton-proton collisions at the center of mass energy of $\sqrt{s}=200$ GeV. The pions were detected at central rapidities of $|\eta|<0.35$. The single-spin asymmetries are consistent with zero for each charge individually, as well as consistent with the previously published neutral-pion asymmetries in the same rapidity range. However, they show a slight indication of charge-dependent differences which may suggest a flavor dependence in the underlying mechanisms that create these asymmetries.

1 data table

Measured charged pion single spin asymmetries in p+p collisions as a function of pT


Systematic study of nuclear effects in $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using $\pi^0$ production

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 064902, 2022.
Inspire Record 1965617 DOI 10.17182/hepdata.115023

The PHENIX collaboration presents a systematic study of $\pi^0$ production from $p$ $+$ $p$, $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%--100%, selection for all collision systems. For 0%--100% collisions, the nuclear modification factors, $R_{xA}$, are consistent with unity for $p_T$ above 8 GeV/$c$, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-$p_T$-$\pi^0$ production, the nucleons in the $d$ and $^3$He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower $p_T$ resemble the Cronin effect -- an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as $p$ $+$Au $>$ $d$ $+$Au $>$ $^{3}$He$+$Au $>$ $p$ $+$Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower $p_T$.

28 data tables

Differential cross section of $\pi^0$ in p+p collisions at $\sqrt{s}$ = 200 GeV

Invariant yield of $\pi^0$ from (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu in different centrality selections at $\sqrt{s}$ = 200 GeV

Nuclear modification factors from inelastic (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu collisions at $\sqrt{s}$ = 200 GeV. The right boxes are the $N_{coll}$ uncertainties from the Glauber model, while the left box represents the overall normalization uncertainty from p+p collisions

More…

Transverse single spin asymmetries of forward neutrons in $p+p$, $p+$Al and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV as a function of transverse and longitudinal momenta

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 105 (2022) 032004, 2022.
Inspire Record 1944868 DOI 10.17182/hepdata.131759

In 2015 the PHENIX collaboration at the Relativistic Heavy Ion Collider recorded $p+p$, $p+$Al, and $p+$Au collision data at center of mass energies of $\sqrt{s_{_{NN}}}=200$ GeV with the proton beam(s) transversely polarized. At very forward rapidities $\eta>6.8$ relative to the polarized proton beam, neutrons were detected either inclusively or in (anti)correlation with detector activity related to hard collisions. The resulting single spin asymmetries, that were previously reported, have now been extracted as a function of the transverse momentum of the neutron as well as its longitudinal momentum fraction $x_F$. The explicit kinematic dependence, combined with the correlation information allows for a closer look at the interplay of different mechanisms suggested to describe these asymmetries, such as hadronic interactions or electromagnetic interactions in ultra-peripheral collisions, UPC. Events that are correlated with a hard collision indeed display a mostly negative asymmetry that increases in magnitude as a function of transverse momentum with only little dependence on $x_F$. In contrast, events that are not likely to have emerged from a hard collision display positive asymmetries for the nuclear collisions with a kinematic dependence that resembles that of a UPC based model. Because the UPC interaction depends strongly on the charge of the nucleus, those effects are very small for $p+p$ collisions, moderate for $p+$Al collisions, and large for $p+$Au collisions.

8 data tables

Measured forward neutron single spin asymmetries in p+p collisions as a function of pT in bins of xF

Measured forward neutron single spin asymmetries in p+Al collisions as a function of pT in bins of xF

Measured forward neutron single spin asymmetries in p+Au collisions as a function of pT in bins of xF

More…

Kinematic dependence of azimuthal anisotropies in $p$ $+$ Au, $d$ $+$ Au, $^3$He $+$ Au at $\sqrt{s_{_{NN}}}$ = 200 GeV 

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 024901, 2022.
Inspire Record 2026169 DOI 10.17182/hepdata.132366

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.

59 data tables

$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

$v_2$ vs $p_T$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

$v_2$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination

More…

Probing gluon spin-momentum correlations in transversely polarized protons through midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.Lett. 127 (2021) 162001, 2021.
Inspire Record 1848987 DOI 10.17182/hepdata.131760

Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.

2 data tables

The direct photon background fraction from Figure 1. This is the estimated fraction of photons in the isolated direct photon sample that came from either $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ decays but the second decay photon is not measured and so these background photons are not eliminated by the tagging cut. These fractions are calculated for the PHENIX EMCal during the 2015 $p$+$p$ run

The transverse single-spin asymmetry of isolated direct photons for $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions with $\sqrt{s} = 200$ GeV. This data appears in both Figure 2 and Table I. An additional scale uncertainty of 3.4% due to the polarization uncertainty is not included.


Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

4 data tables

Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding

More…

Transverse single-spin asymmetries of midrapidity $\pi^0$ and $\eta$ mesons in polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 052009, 2021.
Inspire Record 1833997 DOI 10.17182/hepdata.105043

We present a measurement of the transverse single-spin asymmetry for $\pi^0$ and $\eta$ mesons in $p^\uparrow$ $+$ $p$ collisions in the pseudorapidity range $|\eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $\pi^0$ and $\eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.

2 data tables

Data from Figs. 2, 4, and 5 of the transverse single-spin asymmetry of neutral pions measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $1.06\times10^{-4}$ from bunch shuffling.

Data from Figs. 3 and 4 of the transverse single-spin asymmetry of eta mesons measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $6.20\times10^{-4}$ from bunch shuffling.


Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 032001, 2020.
Inspire Record 1789851 DOI 10.17182/hepdata.95883

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

1 data table

Double-spin asymmetries $A_{LL}$ as a function of transverse momentum for positive and negative pions.


$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

36 data tables

J/psi invariant yields in p+p collisions as a function of pT at forward and backward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al, p+Au and 3He+Au collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

11 data tables

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.

RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.

More…

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

2 data tables

$A_N$ as a function of $A^{1/3}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.

$A_N$ as a function of $N^{Avg.}_{coll}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.


Measurement of charm and bottom production from semileptonic hadron decays in $p$$+$$p$ collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 092003, 2019.
Inspire Record 1716636 DOI 10.17182/hepdata.142288

Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in $p$$+$$p$ collisions provide a precision baseline for comparable forthcoming measurements in A$+$A collisions.

5 data tables

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Unfolded charm and bottom hadron yields in bins of transverse momentum.

More…

Nonperturbative transverse momentum broadening in dihadron angular correlations in $\sqrt{s_{NN}}=200$ GeV proton-nucleus collisions

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 99 (2019) 044912, 2019.
Inspire Record 1695272 DOI 10.17182/hepdata.141680

The PHENIX collaboration has measured high-$p_T$ dihadron correlations in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The correlations arise from inter- and intra-jet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of $p_{\rm out}$, the transverse momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial and final state transverse momenta. These distributions are measured multi-differentially as a function of $x_E$, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side $p_{\rm out}$ widths, sensitive to fragmentation transverse momentum, show no significant broadening between $p$$+$Au, $p$$+$Al, and $p$$+$$p$. The away-side nonperturbative $p_{\rm out}$ widths are found to be broadened in $p$$+$Au when compared to $p$$+$$p$; however, there is no significant broadening in $p$$+$Al compared to $p$$+$$p$ collisions. The data also suggest that the away-side $p_{\rm out}$ broadening is a function of $N_{\rm coll}$, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial and final state transverse momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed.

1 data table

The Gaussian width differences between $p$+$A$ and $p$+$p$ are shown in two $x_E$ bins as a function of $N_{coll}$.


Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 121 (2018) 222301, 2018.
Inspire Record 1684475 DOI 10.17182/hepdata.136476

Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{\rm ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow $v_{2}$ over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.

14 data tables

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Production of $\pi^0$ and $\eta$ mesons in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 98 (2018) 054903, 2018.
Inspire Record 1672859 DOI 10.17182/hepdata.100192

Production of $\pi^0$ and $\eta$ mesons has been measured at midrapidity in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. Measurements were performed in $\pi^0(\eta)\rightarrow\gamma\gamma$ decay channel in the 1(2)-20 GeV/$c$ transverse momentum range. A strong suppression is observed for $\pi^0$ and $\eta$ meson production at high transverse momentum in central Cu$+$Au collisions relative to the $p$$+$$p$ results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au$+$Au with comparable nuclear overlap. The $\eta/\pi^0$ ratio measured as a function of transverse momentum is consistent with $m_T$-scaling parameterization down to $p_T=$2 GeV/$c$, its asymptotic value is constant and consistent with Au$+$Au and $p$$+$$p$ and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in $e^+e^-$ collisions in a range of collision energies $\sqrt{s_{_{NN}}}=$3--1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu$+$Cu collisions either does not affect the jet fragmentation into light mesons or it affects the $\pi^0$ and $\eta$ the same way.

48 data tables

$\pi^0$ spectra from figure 3a from minimum bias Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.

$\pi^0$ spectra from figure 3a from 0-10% central Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.

$\pi^0$ spectra from figure 3a from 10-20% central Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.

More…

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Low-momentum direct photon measurement in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 98 (2018) 054902, 2018.
Inspire Record 1672473 DOI 10.17182/hepdata.143521

We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0\%--40\% most central events at midrapidity for Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$\pm$53(stat)$\pm$57(syst)~MeV/$c$ and 333$\pm$72(stat)$\pm$45(syst)~MeV/$c$ for minimum bias and 0\%--40\% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{\rm ch}/d\eta$ observed in Au$+$Au at the same collision energy.

2 data tables

Direct photon fraction measured with the virtual photon method for different systems in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.

The direct photon spectra for Minimum Bias and 0-40% centrality in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.


Creating small circular, elliptical, and triangular droplets of quark-gluon plasma

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Nature Phys. 15 (2019) 214-220, 2019.
Inspire Record 1672133 DOI 10.17182/hepdata.99787

The experimental study of the collisions of heavy nuclei at relativistic energies has established the properties of the quark-gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons. In this state, matter behaves as a nearly inviscid fluid that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the produced particles, producing a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton-proton ($p$$+$$p$) and proton-nucleus ($p$$+$$A$) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here, we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton-gold ($p$$+$Au), deuteron-gold ($d$$+$Au), and helium-gold ($^3$He$+$Au) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_{NN}}}$~=~200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide a simultaneous description of these measurements.

16 data tables

$v_2$for 0-5% central p+Au collisions

$v_2$for 0-5% central d+Au collisions

$v_2$for 0-5% central $^3$He+Au collisions

More…