Study of Multi - Hadron Events With Isolated Leptons in $e^+ e^-$ Annihilation at $50\le \sqrt{s} \le 55$-{GeV}

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 207 (1988) 355-360, 1988.
Inspire Record 23570 DOI 10.17182/hepdata.29946

We have studied inclusive lepton production in e + e − annihilations into multihadrons in the energy range between √ s =50 and 55 GeV using the VENUS detector at TRISTAN, KEK. Though MARK-J and JADE groups at PETRA found an excess of isolated muon events at √ s ⩾46.3 GeV, we have not observed such an anomaly in muon nor in electron production. The observed rates of isolated leptons are consistent with the production and decay of five known quarks.

4 data tables

Observed rates for whole event sample.

No description provided.

No description provided.

More…

Study of inclusive baryon - anti-baryon pair production of P or Lambda in two photon processes

The VENUS collaboration Uehara, S. ; Abe, K. ; Amako, K. ; et al.
Z.Phys.C 69 (1996) 597-606, 1996.
Inspire Record 400152 DOI 10.17182/hepdata.38341

Inclusive baryon-antibaryon pair production was studied in two-photon events which were collected at the e+e− collider TRISTAN, and correspond to an integrated luminosity of 303 pbt?1. Correlations between a baryon and an antibaryon were studied for their flavors (p or Λ) and their momentum vectors. The experimental results were compared with the expectations from a jet-fragmentation Monte Carlo simulation. We have found that although the ratios of the cross sections of different baryon-flavor combinations are consistent with the Monte Carlo expectations, the cross section shows an excess over the Monte Carlo expectation in a low invariant-mass region of final-state particles at large angles, that indicates a significant contribution from higher-order QCD or non-perturbative effects. The experimental data show no narrow azimuthal-angle correlation, which is expected from a jet-fragmentation Monte Carlo. A search for exclusive Λ pair production has also been made. We have no candidates and have obtained the upper limit for the cross section.

4 data tables

Topological cross section for events in anti-tagged two photon processes.

Ratios of cross sections. Here 'p' includes the protons from the decay of any hadrons, except for lambdas. 'lambda' includes all decay products.

Upper limits (95% CL) assuming shape of the W dependence is W**(-12)(BETA*(LAMBDA)) where BETA*(LAMBDA) is the velocity of the LAMBDA in the c.m. frame of the gamma-gamma.

More…

Study of the $e^+ e^-\to\mu^+ \mu^- \gamma$ reaction at center-of-mass energies between 54 and 64 GeV

The VENUS collaboration Yonezawa, Y. ; Abe, K. ; Amako, K. ; et al.
Phys.Lett.B 264 (1991) 212-218, 1991.
Inspire Record 1389624 DOI 10.17182/hepdata.29359

The cross section and forward-backward muon charge asymmetry for the e + e − → μ + μ − γ reaction were measured to be σ =2.82±0.35 pb and A =−0.34±0.10 with the VENUS detector at TRISTAN at 〈√ s 〉=59.2GeV for an integrated luminosity of 53.5 pb −1 . The measured cross section agrees with the theoretical prediction. The asymmetry result is consistent with the electroweak prediction but not with the QED prediction at the level of 2 σ .

2 data tables

No description provided.

No description provided.


Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…