The reaction $\gamma p \rightarrow p \pi^0 \eta$ has been studied with the CBELSA/TAPS detector at the electron stretcher accelerator ELSA in Bonn for incident photon energies from threshold up to 3.1 GeV. This paper has been motivated by the recently claimed observation of a narrow structure in the M$_{N\eta}$ invariant mass distribution at a mass of 1678 MeV/$c^2$. The existence of this structure cannot be confirmed in the present work. Instead, for E$_{\gamma}$ = 1400 - 1500 MeV and the cut M$_{p\pi^0} \le 1190 $ MeV/$c^2$ a statistically significant structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ is observed with a width of $\Gamma\approx 35$ MeV/$c^2$ while the mass resolution is $\sigma_{res}$ = 5 MeV/$c^2$. Increasing the incident photon energy from 1420 to 1540 MeV this structure shifts in mass from $\approx$ 1700MeV/c$^2$ to $\approx$ 1725 MeV/$c^2$; the width increases to about 50 MeV/$c^2$ and decreases thereafter. The cross section associated with this structure reaches a maximum of $\approx$ 100 nb around E$_{\gamma} \approx$ 1490 MeV (W $\approx $ 1920 MeV), which coincides with the $p a_0$ threshold. Three scenarios are discussed which might be the origin of this structure in the M$_{p\eta}$ invariant mass distribution. The most likely interpretation is that it is due to a triangular singularity in the $\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta$ reaction
Differential cross section for $\pi^0$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
Differential cross section for $\eta$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
Differential cross section for $p$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.
Photon beam asymmetry Sigma at W= 1.2711 GeV
Photon beam asymmetry Sigma at W= 1.2858 GeV
Photon beam asymmetry Sigma at W= 1.3003 GeV
The $\gamma n \to \pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nuclear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $\gamma n \to \pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* \to \gamma n$ at the resonance poles are determined for the first time.
Excitation function at pion c.m. angle THETA=18 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
Excitation function at pion c.m. angle THETA=32 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
Excitation function at pion c.m. angle THETA=41 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
Phys. Rev. Lett. 14, 408 (1965)
No description provided.
No description provided.
No description provided.
A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.
The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.
Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.
No description provided.
No description provided.
No description provided.
We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the $\vec \gamma \vec p\to\eta p$ reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of $\eta$ meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.
Target asymmetry T for c.m. energy W= 1.4969 GeV
Target asymmetry T for c.m. energy W= 1.5156 GeV
Target asymmetry T for c.m. energy W= 1.5341 GeV
Differential and total cross sections for the quasifree reactions $\gamma p\rightarrow\eta p$ and $\gamma n\rightarrow\eta n$ have been determined at the MAMI-C electron accelerator using a liquid deuterium target. Photons were produced via bremsstrahlung from the 1.5 GeV incident electron beam and energy-tagged with the Glasgow photon tagger. Decay photons of the neutral decay modes $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0 \rightarrow 6\gamma$ and coincident recoil nucleons were detected in a combined setup of the Crystal Ball and the TAPS calorimeters. The $\eta$-production cross sections were measured in coincidence with recoil protons, recoil neutrons, and in an inclusive mode without a condition on recoil nucleons, which allowed a check of the internal consistency of the data. The effects from nuclear Fermi motion were removed by a kinematic reconstruction of the final-state invariant mass and possible nuclear effects on the quasifree cross section were investigated by a comparison of free and quasifree proton data. The results, which represent a significant improvement in statistical quality compared to previous measurements, agree with the known neutron-to-proton cross-section ratio in the peak of the $S_{11}(1535)$ resonance and confirm a peak in the neutron cross section, which is absent for the proton, at a center-of-mass energy $W = (1670\pm 5)$ MeV with an intrinsic width of $\Gamma\approx 30$ MeV.
Total cross section as a function of c.m. energy W.
Total cross section as a function of c.m. energy W.
Differential cross section at W= 1.4925 GeV
We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.
Total cross section.
Distribution of the invariant mass of the PI+PI+ system.
Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.