Date

Measurement of the forward - backward asymmetry in e+ e- ---> b anti-b and the b quark branching ratio to muons at TRISTAN using neural networks

The AMY collaboration Ueno, K. ; Kanda, S. ; Olsen, S.L. ; et al.
Phys.Lett.B 381 (1996) 365-371, 1996.
Inspire Record 418709 DOI 10.17182/hepdata.38513

The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).

1 data table

Measurement of the Michel parameters and the average tau-neutrino helicity from tau decays in e+ e- ---> tau+ tau-

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 377 (1996) 313-324, 1996.
Inspire Record 418417 DOI 10.17182/hepdata.47587

The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.

1 data table

No description provided.


Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.


Factorial and Cumulant Moments in $e^{+}e^{-}\to$ Hadrons at the Z$^0$ Resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Lett.B 371 (1996) 149-156, 1996.
Inspire Record 415576 DOI 10.17182/hepdata.41682

We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.

1 data table

CONST is the cumulant to factorial moments ratio. See text for definition.


Total and differential cross-sections of p + p ---> pi+ + d reactions down to 275-keV above threshold

The GEM collaboration Drochner, M. ; Ernst, J. ; Fortsch, S ; et al.
Phys.Rev.Lett. 77 (1996) 454-457, 1996.
Inspire Record 431032 DOI 10.17182/hepdata.19580

The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.

1 data table

The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.


Two measurements of B0 anti-B0 mixing using kaon tagging

The ARGUS collaboration Albrecht, H. ; Hamacher, T. ; Hofmann, R.P. ; et al.
Phys.Lett.B 374 (1996) 256-264, 1996.
Inspire Record 403080 DOI 10.17182/hepdata.28387

Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.

2 data tables

Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.

No description provided.


First observation of a particle - anti-particle asymmetry in the decay of neutral kaons into pi0 pi0

The CPLEAR collaboration Adler, R. ; Alhalel, T. ; Angelopoulos, A. ; et al.
Z.Phys.C 70 (1996) 211-218, 1996.
Inspire Record 399741 DOI 10.17182/hepdata.48092

CP violation has been observed as a time-dependent rate asymmetry between the decays ${⩈erline K}^0 ⌝ghtarrow ≪^{0} ≪^{0}$ and K0 → π0π{0}, where the neutral kaons are produced with definite and individually known strangeness in ${⋏r p}p ⌝ghtarrow{⩈erline K}^0 K^+≪^- $ or p̅p → K0 K− π+. A special technique for the data analysis has been developed. The values obtained for ϕ00 and ¦ η00¦ are in agreement with those of previous measurements of CP violation.

1 data table

No description provided.


A Direct measurement of the pseudoscalar decay constant, f(D(s))

The BES collaboration Bai, J.Z. ; Bardon, O. ; Blum, Ira K. ; et al.
Phys.Rev.Lett. 74 (1995) 4599-4602, 1995.
Inspire Record 382314 DOI 10.17182/hepdata.50375

The Beijing Spectrometer (BES) experiment has observed purely leptonic decays of the Ds meson in the reaction e+e−→Ds+Ds− at a c.m. energy of 4.03 GeV. Three events are observed in which one Ds decays hadronically to φπ, K¯*0K, or K¯0K, and the other decays leptonically to μνμ or τντ. With the assumption of μ−τ universality, values of the branching fraction, B(Ds→μνμ)=(1.5−0.6−0.2+1.3+0.3)%, and the Ds pseudoscalar decay constant, fDs=(4.3−1.3−0.4+1.5+0.4)×102 MeV, are obtained.

2 data tables

No description provided.

In this table CONST is the pseudoscalar decay constant, f_[D/S].


Measurement of W - photon couplings with CDF in p - anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 1936-1940, 1995.
Inspire Record 377331 DOI 10.17182/hepdata.42429

We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8

1 data table

E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).


Production of chi charmonium via 300-GeV/c pion and proton interactions on a lithium target

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 49 (1994) 543-546, 1994.
Inspire Record 354743 DOI 10.17182/hepdata.42541

We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.

3 data tables

The cross section per nucleon.

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.