The Krakow-Louisiana-Minnesota-Moscow Collaboration (KLMM) has exposed a set of emulsion chambers with lead targets to a 158 GeV/c per nucleon beam of Pb208 nuclei, and we report the initial analysis of 40 high-multiplicity Pb-Pb collisions. To test the validity of the superposition model of nucleus-nucleus interactions in this new regime, we compare the shapes of the pseudorapidity distributions with FRITIOF Monte Carlo model calculations, and find close agreement for even the most central events. We characterize head-on collisions as having a mean multiplicity of 1550±120 and a peak pseudorapidity density of 390±30. These estimates are significantly lower than our FRITIOF calculations. © 1996 The American Physical Society.
No description provided.
No description provided.
The Indiana Silicon Sphere 4π detector has been used to measure light-charged particles and intermediate-mass fragments (IMFs) emitted in the 18–4.8 GeV He3+natAg, Au197 reactions. Ejectile multiplicity and total event kinetic energy distributions scale systematically with projectile energy and target mass, except for the Agnat target at 3.6 and 4.8 GeV. For this system, a saturation in deposition energy is indicated by the data, suggesting the upper projectile energy for stopping has been reached. Maximum deposition energies of ∼950 MeV for the Agnat target and ∼1600 MeV for the Au197 target are inferred from the data. The results also demonstrate the importance of accounting for fast cascade processes in defining the excitation energy of the targetlike residue. Correlations between various observables and the average IMF multiplicity indicate that the total thermal energy and total observed charge provide useful gauges of the excitation energy of the fragmenting system. Comparison of the experimental distributions with intranuclear cascade predictions shows qualitative agreement. © 1996 The American Physical Society.
TARGET IS NATURAL AG.
No description provided.
The analyzing power Ay for π+p→ scattering at 68.3 MeV has been measured at the Paul Scherrer Institut with the magnetic spectrometer LEPS. The measurements cover the angular range 40°≤θlab≤70°. The protons have been polarized in a butanol target, operated in frozen spin mode. The S31 phase shift comes out by about 1° smaller than the Koch-Pietarinen [Nucl. Phys. A 336, 331 (1980)] phase shift analysis, supporting the necessity of an alternative dispersion analysis of πN scattering to determine the σ term and the πN coupling constant. © 1996 The American Physical Society.
The two data sets correspond to measurements with two different target compositions (see text).
A strangelet search in Si+Pt and Au+Pt collisions at alternating-gradient synchrotron (AGS) energies, using a focusing spectrometer, sensitive to mass per charge of 3-14 GeV/c2 was conducted during the 1992 and 1993 heavy ion runs at the AGS. The null results thereof are presented as upper limits on the invariant production cross section, in the range of 10−5-10−4 mb c3/GeV2, and model dependent sensitivity limits in the range of 10−7-10−5 per collision. Measurements of the production cross sections of several nonstrange nuclear systems, from p to Be7 and Li8, the background of the strangelet search, are also presented.
No description provided.
Multifragmentation of Agnat and Au197 nuclei induced by 1.8–4.8 GeV He3 ions has been studied with the Indiana Silicon Sphere 4π detector array. Rapidity, moving source, and sphericity-coplanarity analyses are consistent with near-simultaneous emission from a source in approximate kinetic equilibrium. For the most dissipative collisions, the spectral peaks are broadened and shifted to very low energies, indicative of emission from an extended nuclear system with ρ/ρ0∼1/3. Predictions of an intranuclear cascade/expanding, emitting source model compare well with experimental multiplicity distributions and the evolution of fragment spectral shapes. © 1996 The American Physical Society.
No description provided.
No description provided.
Total and differential cross sections for photoproduction of η mesons from 12 C, 40 Ca, 93 Nb, and nat Pb have been obtained up to 790 MeV incident photon energy at the Mainz Microtron (MAMI) with the TAPS spectrometer. The absorption cross section σ ηN abs = (30 ± 2.5 ± 6)mb of η mesons in nuclear matter and the absorption length λ η = (2.0 ± 0.2 ± 0.4) fm are extracted. No significant depletion of the S 11 (1535) strength in the η photoproduction on nuclei is observed.
THE TOTAL SIG WAS PARAMETRIZED BY A**POWER.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.
A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.
Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).
No description provided.
Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Here UNSPEC is invisible particle.