Date

Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table

No description provided.


Measurements of the polarization in proton proton elastic scattering from 2.50 to 5.15 gev/c

Parry, J.H. ; Booth, N.E. ; Conforto, G. ; et al.
Phys.Rev.D 8 (1973) 45-63, 1973.
Inspire Record 81983 DOI 10.17182/hepdata.22058

In an experiment at the Argonne Zero-Gradient Synchrotron we have measured values of the polarization parameter P(t) in the elastic scattering of negative pions, positive pions, positive kaons, and protons on protons at several incident laboratory momenta from 2.50 to 5.15 GeVc, and for values of the momentum transfer variable −t from 0.2 to 2.0 (GeVc)2. The final results from p−p elastic scattering presented here extend our knowledge of the polarization to much larger values of −t than the results of previous measurements. Outstanding features revealed by these polarization data include (1) the development of a dip at about −t=0.7 (GeVc)2, with (2) a substantial secondary peak at larger values of −t and (3) the gradual diminution of the maximum polarization with increasing energy. It is possible to fit the t dependence of the experimental results with a simple model. The energy dependence of the polarized cross sections is also discussed.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Small Angle Elastic Proton Proton Scattering from 25-GeV to 200-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 29 (1972) 1755-1758, 1972.
Inspire Record 73778 DOI 10.17182/hepdata.21428

We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.

2 data tables

No description provided.

THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.


Proton proton elastic scattering and nucleon resonance production at high-energies

Allaby, J.V. ; Diddens, A.N. ; Dobinson, R.W. ; et al.
Nucl.Phys.B 52 (1973) 316-382, 1973.
Inspire Record 73454 DOI 10.17182/hepdata.32650

Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.

10 data tables

ESTIMATED 8 PCT RANDOM ERROR.

ESTIMATED 8 PCT RANDOM ERROR.

ESTIMATED 8 PCT RANDOM ERROR.

More…

Small angle proton proton elastic scattering at very high-energies (460-GeV**2 < s < 2900-GeV**2)

Barbiellini, G. ; Bozzo, M. ; Darriulat, P. ; et al.
Phys.Lett.B 39 (1972) 663-667, 1972.
Inspire Record 73452 DOI 10.17182/hepdata.28304

We have investigated the above processes at the CERN Intersecting Storage Rings (ISR). Results show a marked change of the slope parameter b ( t , s ) = (d/d t ) ln (d σ /d t ) around − t ≈ 0.10 GeV 2 . The s − and t − dependence of b ( t , s ) have been observed over the interval 460 GeV 2 < s < 2900 GeV 2 and 0.02 GeV 2 < t < 0.40 GeV 2 .

4 data tables

No description provided.

No description provided.

No description provided.

More…

Small angle proton proton elastic scattering from 9 to 70 gev/c

Beznogikh, G.G. ; Bujak, A. ; Kirillova, L.F. ; et al.
Phys.Lett.B 39 (1972) 411-413, 1972.
Inspire Record 75806 DOI 10.17182/hepdata.28333

Proton-proton elastic scattering has been measured over the four-momentum transfer squared 0.0007 ⩽ t ⩽ 0.02 GeV 2 /c 2 . A gas hydrogen jet has been used as an internal target of the accelerator. The results indicate that the ratio of the real to the imaginary part of the proton-proton forward scattering amplitude rises smoothly with increasing energy from α = −0.35 ± 0.05 at p = 9.39 GeV/ c to α = −0.092 ± 0.011 at p = 69.8 GeV/ c .

1 data table

THE TOTAL ELASTIC CROSS SECTION IS DERIVED FROM THE OPTICAL THEOREM POINT AND SLOPE PARAMETER.


Wide-angle proton-proton elastic scattering from 1.3 to 3.0 gev/c

Williams, D.T. ; Bloodworth, I.J. ; Eisenhandler, E. ; et al.
Nuovo Cim.A 8 (1972) 447-469, 1972.
Inspire Record 78276 DOI 10.17182/hepdata.37468

Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Investigation of elastic proton proton scattering in the coulomb and nuclear interference region in the energy range 8-70 gev.

Bartenev, V.D. ; Beznogikh, G.G. ; Buyak, A. ; et al.
Yad.Fiz. 16 (1972) 96-108, 1972.
Inspire Record 75989 DOI 10.17182/hepdata.19248

None

1 data table

No description provided.


Large-angle proton-proton elastic scattering at intermediate momenta

Brabson, B.B. ; Paik, H.W. ; Sidwell, R.A. ; et al.
COO-2009-18, 1971.
Inspire Record 1085234 DOI 10.17182/hepdata.47019

None

13 data tables
More…

Isobar production and elastic scattering in p p interactions from 6-GeV/c to 30-GeV/c

Edelstein, R.M. ; Carrigan, Richard A., Jr. ; Hien, N.C. ; et al.
Phys.Rev.D 5 (1972) 1073-1096, 1972.
Inspire Record 67297 DOI 10.17182/hepdata.22467

Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.

25 data tables

No description provided.

No description provided.

No description provided.

More…