A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of 56 Fe nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.
No description provided.
No description provided.
NUCLECS IS CNO.
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.
None
The cross section per nucleon is evaluated with assumption of the linear atomic number dependence. SIG(C=NEUTRINO) and SIG(C=ANTINEUTRINO) are corresponded to the NUMU and NUMUBAR data, respectevly. CLOOP-OVER.
The results of total cross section measurements for theνμ,\(\bar \nu _\mu\) interactions with isoscalar target in the 3 – 30 GeV energy range have been presented. The data were obtained with the IHEP-JINR Neutrino Detector in the “natural” neutrino beams of the U-70 accelerator. Neutrino fluxes were obtained by averaging the spectra, based on the calculations with the use of the experimental data on secondary particle yields from the target and muon fluxes measurements in 9 gaps of the muon filter, as well as the spectra determined from quasi-elastic events and spectra defined by extrapolating differential distributiondσ/dy in the regiony=0. The significant deviation from the linear dependence forσtot versus neutrino energy is determined in the energy range less than 15 GeV.
No description provided.
No description provided.
The isoscalar structure functions xF_3 and F_2 are measured as functions of x averaged over all Q~2 permissible for the range 6 to 28 GeV of incident (anti)neutrino energy. With the measured values of xF_3, the value of the Gross-Llewellyn Smith sum rule is found to be $\int_{0}~{1}{F_3 dx} = 2.13\pm0.38 (stat)\pm 0.26 (syst)$. The QCD analysis of xF_3 provides $\Lambda_{\overline{MS}} =358 \pm 59 MeV$ . The obtained value of the strong interaction constant $\alpha_S (M_Z)=0.120~{+3}_{-4}$ is larger than most of the deep inelastic scattering results.
The value of F2 is extracted with R = 0. The difference F2(C=R=.1)-F2(C=R=0.) is also presented.
The double-differential production cross-section of positive pions, $d^2\sigma^{\pi^{+}}/dpd\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < $p_{\pi}$ < 6.5 GeV/c and 30 mrad < $\theta_{\pi}$ < 210 mrad in the laboratory frame.
Double differential cross section for PI+ production in the angular range 30 to 60 MRAD. Errors are point-to-point only.
Double differential cross section for PI+ production in the angular range 60 to 90 MRAD. Errors are point-to-point only.
Double differential cross section for PI+ production in the angular range 90 to 120 MRAD. Errors are point-to-point only.
None
Linear A-dependece is assumed.
The isoscalar structure functions $xF_3$ and $F_2$ are measured as functions of $x$ averaged over all $Q^2$ permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of $xF_3$ structure function provides $\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200)$ MeV under the assumption of QCD validity in the region of low $Q^2$. The corresponding value of the strong interaction constant $\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013}$ agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.
No description provided.
No description provided.
We report on double-differential inclusive cross-sections of the production of secondary protons, deuterons, and charged pions and kaons, in the interactions with a 5% nuclear interaction length thick stationary beryllium target, of a +8.9 GeV/c proton and pion beam, and a -8.0 GeV/c pion beam. Results are given for secondary particles with production angles between 20 and 125 degrees.
Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 20 to 30 degrees.
Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 30 to 40 degrees.
Double differential inclusive cross section for the reaction P BE --> P X with an 8.9 GeV beam and production angle 40 to 50 degrees.
In the context of a two-flavour approximation we reinterpret the published NOMAD limit on ν μ → ν τ oscillations in terms of ν e → ν τ oscillations. At 90% C.L. we obtain sin 2 2θ eτ < 5.2×10 −2 for large Δm 2 , while for sin 2 2 θ eτ =1 the confidence region includes Δm 2 <11 eV 2 / c 4 .
Average energy.