None
No description provided.
No description provided.
No description provided.
Theπ0 andη0 production is studied inπ−p interactions at 360 GeV/c. The cross section forπ0 production in the forward hemisphere (X>0) isσ(π0)=(49.7 ± 1.0 ± 1.1) mb and for η withX>0.1,Nch>2,σ(η0)=(3.1 ± 0.5) mb. The ratio of theπ0 toη0 cross section forX>0.1,Nch>2 isσ(π0)/σ(η0). Results on FeynmanX andpT distributions are presented. The data were obtained using the European Hybrid Spectrometer EHS and the bubble chamber LEBC at CERN.
.
.
.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
Results are presented on the transverse momentum distributions of charged hadrons in 280 GeV muon-proton deep inelastic interactions. The transverse momenta are defined relative to the accurately measured virtual photon direction and the experiment has almost complete angular acceptance for the final state hadrons. Significantly larger values of the average transverse momentum squared are found for the forward going hadrons than for the target remnants. This result, combined with a study of the rapidity region over which the transverse momentum is compensated, can be explained by a significant contribution from soft gluon radiation, but not by a large value of the primordial transverse momentum of the struck quark.
Errors given are statistical only.
Errors are statistical only.
Errors are statistical only.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.