We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.
No description provided.
Exclusive electroproduction of rho^0 mesons has been measured using the ZEUS detector at HERA in two Q^2 ranges, 0.25
The spin-density matrix elements obtained from the BPC low Q**2 data set.
The spin-density matrix elements obtained from the DIS high Q**2 data set.
The spin-density matrix elements obtained from the low Q**2 BPC data set in two W intervals.
We search for Higgs bosons produced in association with a massive vector boson in 91±7pb−1 of pp¯ collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume the Higgs scalar H0 decays to a bb¯ pair with branching ratio β, and we consider the hadronic decays of the vector boson V ( W or Z). Observations are consistent with background expectations. We place 95% confidence level upper limits on σ(pp¯→H0V)β as a function of the scalar mass (MH0) over the range 70
Cross section from the hadronic analysis fit (C=MEASURED) plus 95 PCT confidence upper limits from the hadronic, leptonic and combined analyses.
We report on a search for second generation leptoquarks (Phi_2) using a data sample corresponding to an integrated luminosity of 110 pb^{-1} collected at the Collider Detector at Fermilab. We present upper limits on the production cross section as a function of Phi_2 mass, assuming that the leptoquarks are produced in pairs and decay into a muon and a quark with branching ratio beta. Using a Next-to-Leading order QCD calculation, we extract a lower mass limit of M_{\Phi_2} > 202 (160) GeV$/c^{2} at 95% confidence level for scalar leptoquarks with beta=1(0.5).
Cross section times branching ratios.
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV
Measured cross sections for radiative Bhabha scattering events.
Measured cross sections for the quasi-real Compton scattering events.
The ratio of the W+≥1 jet cross section to the inclusive W cross section is measured using W±→e±ν events from p¯p collisions at s=1.8TeV. The data are from 108pb−1 of integrated luminosity collected with the Collider Detector at Fermilab. Measurements of the cross section ratio for jet transverse energy thresholds (ETmin) ranging from 15 to 95 GeV are compared to theoretical predictions using next-to-leading-order QCD calculations. Data and theory agree well for ETmin>25GeV, where the predictions lie within 1 standard deviation of the measured values.
No description provided.
We present an analysis of dilepton events originating from top-antitop production in proton-antiproton collisions at sqrt{s}=1.8 TeV at the Fermilab Tevatron Collider. The sample corresponds to an integrated luminosity of 109+-7 pb^{-1}. We observe 9 candidate events, with an estimated background of 2.4+-0.5 events. We determine the mass of the top quark to be M_top = 161+-17(stat.)+-10(syst.) GeV/c^2. In addition we measure a top-antitop production cross section of 8.2+4.4-3.4 pb (where M_top = 175 GeV/c^2 has been assumed for the acceptance estimate).
No description provided.
Using the CLEO detector at the Cornell Electron Storage Ring, we have made a measurement of R=sigma(e+e- ->hadrons)/sigma(e+e- ->mu+mu-) =3.56+/-0.01+/-0.07 at ECM=10.52 GeV. This implies a value for the strong coupling constant of alpha_s(10.52 GeV)=0.20+/-0.01+/-0.06, or alpha_s(M_Z)=0.13+/-0.005+/-0.03.
Corrected for background and radiactive effects.
Value of ALPHAS, the strong coupling constant, from the measurement of R. CT,= ALPHAS also given evolved to the Z0 mass.
We present the results of a search for third generation leptoquark (LQ) pairs in 110±8pb−1of p¯p collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume third generation leptoquarks decay to a τ lepton and a b quark with branching ratio β. We observe one candidate event, consistent with standard model background expectations. We place upper limits on σ(p¯p→LQLQ¯)̇β2 as a function of the leptoquark mass MLQ. We exclude at 95% confidence level scalar leptoquarks with MLQ<99GeV/c2, gauge vector leptoquarks with MLQ<225GeV/c2, and nongauge vector leptoquarks with MLQ<170GeV/c2 for β=1.
The cross sections times branching ratio. KAPPA is an 'anomalous magnetic moment' (theoretical parameter). See text for details.
The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.
SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.
alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.