The transverse-momentum spectra of lambdas (Λ0, Λ¯0) produced in the central region has been measured in p¯p collisions at s=1.8 TeV at the Fermilab Collider. We find that the average transverse momentum of the lambdas increases more rapidly with center-of-mass energy than that of charged particles, and the ratio of lambdas to charged particles increases as a function of center-of-mass energy.
No description provided.
No description provided.
No description provided.
A search for pairs of highpT prompt photons produced in hydrogen by a 280 GeV/c incidentπ- beam has been carried out using a fine-grained electromagnetic calorimeter and the Omega spectrometer at the CERN SPS. Clear evidence for the existence of such events is found with a six standard deviation signal forpT>3.0 GeV/c. The cross-sections are consistent with beyond leading order QCD calculations. A discussion on the determination of αs is also presented.
PT is the transverse momentum of either of the two photons.
PT is the transverse momentum of either of the two photons.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.