The product of the photoproduction cross section at 11.1 GeV for ψ(3105) on nucleons times the branching ratio for ψ into e+e− is less than 75 pb, at the 90% confidence level. This result implies a ψ-nucleon total cross section of less than 1.2 mb.
The branching ratio for J/PSI --> E+ E- is taken as 0.06.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
Differential cross sections have been measured at Fermilab with a focusing spectrometer for π±p, K±p, and p±p elastic scattering at 50-, 70-, 100-, 140-, and 175-GeV/c incident momentum over the |t| range 0.03 to 0.8 GeV2. The results are smooth in t and are parametrized by quadratic exponential fits.
DATA PRESENTED AGAIN IN LATER PAPER.
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
ρ± photoproduction from hydrogen and deuterium at 9.6 GeV is studied. The reactions γp→ρ+n and γp→ρ−Δ++(1236) have cross sections much larger than expected from pion exchange alone. t distributions do not show the sharp forward peak characteristic of one-pion exchange contributions. Density matrices indicate an isotropic decay distribution. The ratio of ρ+ to ρ− production on deuterium differs from unity and by the amount expected from interference between ρ and A2 exchanges. We conclude that π exchange is unimportant for ρ± photoproduction, and infer that ρ exchange dominates.
No description provided.
No description provided.
DENSITY MATRICES IN HELICITY FRAME - UNPUBLISHED.
We have studied ω photoproduction using 7.5- to 10.5-GeV tagged photons. Cross sections from hydrogen lie 22% below the bubble chamber results of Ballam et al., but have a similar slope. Density matrices indicate approximate s-channel helicity conservation. The proton-neutron cross-section difference is midway between zero and the value suggested by the γp−γn total-cross-section difference. Fits to the cross sections for D, Be, and Cu and those for Be, C, Al, Cu, and Pb from a previous experiment yield σωN=25.4±2.7 mb and γω24π=7.6±1.2.
FORWARD CROSS SECTION IS 366 +- 49 MUB/GEV**2 AND SLOPE IS 47.1 +- 8.0 GEV**-2.
FORWARD CROSS SECTION IS 9.56 +- 1.24 MB/GEV**2 AND SLOPE IS 160 +- 23 GEV**-2.
A comparison of K±p and p±p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19±0.04 and 0.11±0.02 GeV2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively.
KP AND PP CROSSOVER POINTS AT -T = 0.19 +- 0.04 AND 0.11 +- 0.02 GEV**2 (AVERAGE VALUES) RESPECTIVELY.
Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.
We report measurements of inelastic photoproduction of ω and ρ± mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and ρ−Δ++ production, differential cross sections dσdt′ and spin density matrices are presented. For higher missing masses the cross sections dσdMX2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for ρ±.
CROSS SECTION PER NUCLEON FOR COMBINED HYDROGEN AND DEUTERIUM DATA ALLOWING FOR A GLAUBER CORRECTION FACTOR OF 0.88 FOR THE DEUTERIUM CROSS SECTIONS.
HYDROGEN AND DEUTERIUM DATA COMBINED BY AVERAGING.
OBTAINED BY EXTRAPOLATING A FIT TO D(SIG)/DT OVER -T = 0 TO 0.52 GEV**2.