The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, <n>_{bb}, and the difference delta_{bl} between <n>_{bb} and the multiplicity, <n>_{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.
Only statistical errors.
No description provided.
Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.
The measured differential cross section for SIGMA- production.
The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.
The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.
We have developed a new technique for inclusive reconstruction of the energy of B hadrons. The excellent efficiency and resolution of this technique allow us to make the most precise determination of the b-quark fragmentation function, using e+e- -> Z0 decays recorded in the SLD experiment at SLAC. We compared our measurement with the predictions of a number of fragmentation models. We excluded several of these models and measured the average scaled energy of weakly-decaying B hadrons to be <x_B>=0.714+-0.005(stat)+-0.007(syst) +-0.002(model dependence).
Unfolded distribution of weakly decaying scaled B-hadron enery with statistical errors only.
The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).
We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.
Measured cross sections for the hadronic events.
Measured cross sections for the muon-pair events.
Measured cross sections for the tau-pair events.
The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model.
Fraction of longitudinally polarized W bosons. Combined results from 183 and 189 GeV.
We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.
No description provided.
The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in
The errors are statistical and systematic combined in quadrature.
No description provided.
The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the Delphi detector at the Z resonance between 1992 and
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.