Measurements are reported of the differential cross section for the reaction π − +p→ ω +n from threshold to a final-state c.m. momentum P ∗ of 200 MeV /c . The previously reported fall in total cross section σ/P ∗ below about 100 MeV/ c is again seen. The differential cross section remains close to isotropic over the entire range. A paralle experiment on the variation in the elastic differential cross section across the threshold shows evidence of this threshold. The elastic data cover a range of incident moments from 1010 to 1180 MeV/ c in steps of 5 MeV/ c .
CROSS SECTION DEPENDENCE ON FINAL STATE CENTRE OF MASS MOMENTUM.
ANGULAR DISTRIBUTIONS ARE ALMOST ISOTROPIC.
LEGENDRE POLYNOMIAL COEFFICIENTS NORMALIZED SUCH THAT SIG = 4*PI*LEG(L=0).
Radiation capture of π − on hydrogen has been measured in the momentum range from p π − = 210 MeV/ c to p π − = 385 MeV/ c and for c.m. angles between 30° and 120°, covering the Δ (1232) resonance. The unambiguous separation of the events from the charge exchange background is based on precise neutron time-of-flight measurements. Detector efficiencies were carefully determined in separate experiments. The experimental results are in good agreement with those of the inverse reaction and with most recent multipole analyses. An upper limit of ±2% can be set on the contribution of the isotensor term to the transition amplitude. A time reversal violating phase, when added to the resonant M 1+ 3 amplitude in the Donnachie-Shaw model, is found to be consistent with zero.
This results was extracted from the cross sections for the inverse reactionPI- P --> GAMMA N via detailed balance by applying relation: D(SIG(GAMMA))/D(OM EGA)=D(SIG(PI-))/D(OMEGA)*P(PI)**2/2/P(GAMMA)**2.
In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.
No description provided.
No description provided.
Large-angle π±p elastic-scattering cross sections, measured between 2 and 9 GeV/c in fine intervals of incident momentum and scattering angle, are used to search for cross-section fluctuations occurring for small changes in the center-of-mass energy as suggested by Ericson and Mayer-Kuckuck and by Frautschi. Significant fluctuations are observed.
No description provided.
No description provided.
No description provided.
The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.
No description provided.
No description provided.
No description provided.
Four angular distributions of the differential cross section of the reaction γ + p → π 0 + p have been measured at the Bonn 2.5 GeV Synchrotron at pion c.m. angles between 3° and 63° in the photon energy range from 0.9 GeV to 1.2 GeV. The π 0 mesons were detected by their two decay photons. The data are compared with data of other laboratories and predictions of two recent partial-wave analyses.
No description provided.
No description provided.
No description provided.
Angular distributions of the target symmetry for the reaction γ + p → π 0 + p have been measured at the Bonn 2.5 GeV Electron Synchrotron at pion c.m. angles between 13° and 63° and photon energies of 1.0 and 1.1 GeV. The π 0 mesons were detected by their two decay photons with total absorption lead-glass Čerenkov counters. Butanol was used as target material in a continuous flow 3 He cryostat operating at 0.5 K and 25 kG. The π 0 counting rate from free protons in the butanol target was derived from the measurements of the differential cross section on hydrogen. The data are compared with data of other laboratories and the results of two recent partial-wave analyses.
No description provided.
No description provided.
No description provided.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
Pion production on a CD2 target has been measured using the high-resolution magnetic spectrometer SPES I. Differential cross sections for the reaction D(p, π+)T have been determed at Tp=410, 605, and 809 MeV. The present data, together with previous results establish a complete angular distribution of the reaction D(p, π+)T at ∼ 600 MeV and the energy dependence of the differential cross section for this reaction at several constant momentum transfers.
No description provided.
No description provided.
Using a secondary pion beam from the Argonne Zero Gradient Synchrotron we have studied the process π−p→φn in the region of the cross-section enhancement near kinematic threshold. For incident momenta between 1.6 and 2 GeV/c, we have determined production and decay angular distributions and extrapolated total cross sections from a sample of about 160 φ's above background. The production and decay distributions are consistent with isotropy over this entire incident-momentum range. The extrapolated total cross section varies between 19 and 25 μb.
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).