ELECTROPRODUCTION CROSS-SECTIONS IN THE RESONANCE REGION MEASURED AT LARGE SCATTERING ANGLES

Gerhardt, B. ; Muller, H. ; Drees, J. ; et al.
Z.Phys.C 7 (1980) 11-15, 1980.
Inspire Record 160216 DOI 10.17182/hepdata.14097

To complete data on resonance electroproduction we constructed an electron spectrometer with large angular and momentum acceptance. As a first result inclusive cross sections for an invariant hadronic mass 1.2<W<1.7 GeV and a four momentum transfer squared 0.5<Q2<1.5 (GeV/c)2 and for values of the polarization parameter 0.1<ɛ<0.25 are presented. Combining our results with the SLAC 4°-data we obtain σL/σT in the specified kinematical range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

2 data tables

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.

Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).


eta meson photoproduction on hydrogen near threshold

Price, J.W. ; Anton, G. ; Arends, J. ; et al.
Phys.Rev.C 51 (1995) R2283-R2287, 1995.
Inspire Record 405009 DOI 10.17182/hepdata.25882

The total cross section for γp→ηp near threshold has been measured using the PHOENICS tagging system at the ELSA electron facility of the Physikalisches Institut der Universität Bonn. The photons are created by bremsstrahlung, and are tagged by measuring the momentum of each electron after the photon has been emitted. The recoil proton from γp→ηp is detected by the AMADEUS counter setup in coincidence with the tagging system. Data were taken with AMADEUS at 3.3° in the laboratory, where the large Jacobian increases our event rate so that we obtain the cross section from threshold (Eγ=707.2 MeV) to Eγ≃720 MeV with adequate statistics. The γp→ηp events are identified by kinematics, dE/dx, and timing information. We find that in our energy region the production cross section is consistent with S-wave production.

1 data table

No description provided.


Further analysis of anti-p p ---> 3pi0, eta eta pi0 and eta pi0 pi0 at rest

Abele, A. ; Adomeit, J. ; Armstrong, D.S. ; et al.
Nucl.Phys.A 609 (1996) 562-584, 1996.
Inspire Record 431685 DOI 10.17182/hepdata.36492

A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.

1 data table

A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


Measurement of the target asymmetry of eta and pi0 photoproduction on the proton.

Bock, A. ; Anton, G. ; Beulertz, W. ; et al.
Phys.Rev.Lett. 81 (1998) 534-537, 1998.
Inspire Record 474492 DOI 10.17182/hepdata.19492

At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.

3 data tables

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).


eta' production in proton proton scattering close to threshold.

Moskal, P. ; Balewski, J.T. ; Budzanowski, A. ; et al.
Phys.Rev.Lett. 80 (1998) 3202-3205, 1998.
Inspire Record 467809 DOI 10.17182/hepdata.42086

The $pp \to pp \eta^{\prime}$ (958) reaction has been measured at COSY using the internal beam and the COSY-11 facility. The total cross sections at the four different excess energies \mbox{$ Q = ~1.5 ~MeV, ~1.7 ~MeV, ~2.9 ~MeV,$ and $ ~4.1 MeV$} have been evaluated to be \mbox{$ \sigma = 2.5 \pm 0.5~nb$, $~~~ 2.9 \pm 1.1~nb$, $~~~ 12.7 \pm 3.2~nb$, ~ and $~~~ 25.2 \pm 3.6 ~nb $}, respectively. In this region of excess energy the $\eta^{\prime}$ (958) cross sections are much lower compared to those of the $\pi ^0$ and $\eta$ production.

1 data table

Only statistical errors are presented in the table.


Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


Measurement of the vector analyzing power in elastic electron proton scattering as a probe of double photon exchange amplitudes.

The SAMPLE collaboration Wells, S.P. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.C 63 (2001) 064001, 2001.
Inspire Record 524209 DOI 10.17182/hepdata.31444

We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.

1 data table

Polarized beam.


The transverse asymmetry A(T') from quasielastic polarized He-3(pol.)(e(pol.),e') process and the neutron magnetic form factor.

Xu, W. ; Dutta, D. ; Xiong, F. ; et al.
Phys.Rev.Lett. 85 (2000) 2900-2904, 2000.
Inspire Record 531416 DOI 10.17182/hepdata.31474

We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.

1 data table

Ratio of neutron magnetic form-factor to dipole value.