Showing 1 of 1 results
The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.