We have measured the ratio of the real to the imaginary parts of the p¯p forward-scattering amplitude in the incident-momentum range 360 to 650 MeV/c. These results are in good agreement with predictions of the Paris nucleon-antinucleon potential model which include spin-flip effects.
.
RESULTS OF FITS TO THE FORWARD-SCATTERING DIFFERENTIAL CROSS SECTIONS ASSUMING THE RATIO OF THE SPIN-FLIP TO NON-SPIN-FLIP PARTS OF THE FORWARD AMPLITUDE IS ZERO.
RESULTS OF FITS TO THE FORWARD-SCATTERING DIFFERENTIAL CROSS SECTIONS ASSUMING THE RATIO OF THE SPIN-FLIP TO NON-SPIN-FLIP PARTS OF THE FORWARD AMPLITUDE IS PARAMATERISED AS 0.3698-0.1384*PLAB(IN GEV).
The invariant cross section of the reaction of deuteron stripping on carbon target has been measured at a deuteron momentum of 8.9 GeV/c. The cross section is obtained at a zero detection angle of the stripping proton: E/p2xd2σ/dpdΩ=(281+-9)xbxGeV/srx(GeV/c)3. This value is consistent with the one calculated in the framework of the Bertocci-Treleani model of deuteron fragmentation. When the method of Nissen-Meyer is used for orthogonalization of the wave functions of primary deuteron and the (np) system, resulting from its disintegration, a similar calculation gives the result, which is 1.4 times larger than the measured value. Distribution in the cosine of angle of proton yield at the fixed proton momentum p turned out to be near to isotropy one and distribution in p at the fixed cos theta has the maximum at p=50 MeV/c
.
.
.