In photoproduction experiments, a large number of final states yielding various resonance contributions are accessible. To extract resonance parameters via partial-wave analysis not only the measurement of differential cross-sections is necessary, but also the determination of polarization observables. At the electron accelerator ELSA (Bonn) the coherent bremsstrahlung method was used to generate a linearly polarized photon beam. Using the CBELSA/TAPS detector setup, the beam asymmetry Σ in the reaction γp → pπ 0 η was determined as a function of various masses and angles for photon energies between 970MeV and 1650MeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 0.970 to 1.200 GeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.200 to 1.450 GeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.450 to 1.650 GeV.
Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations.
Target asymmetry for $\pi^0\pi^0$ as a function of the polar angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\pi^0\pi^0$ invariant mass for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\phi^*$ angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Data on pbar-b annihilation in flight into pizero-pizero-eta are presented for nine beam momenta 600 to 1940 MeV/c. The strongest four intermediate states are found to be f_2(1270)-eta, a_2(1320)-pi, sigma-eta and a_0(980)-pi. Partial wave analysis is performed mainly to look for resonances formed by pbar-p and decaying into pizero-pizero-eta through these intermediate states. There is evidence for the following s-channel I = 0 resonances : two 4^{++} resonances with mass and width (M,Gamma) at (2044, 208) MeV and (2320+-30, 220+-30) MeV/ three 2^{++} resonances at (2020+-50, 200+-70) MeV, (2240+-40, 170+-50) MeV and (2370+-50, 320+-50) MeV/ two 3^{++} resonances at (2000+-40, 250+-40) MeV and (2280+-30, 210+-30) MeV/ a 1^{++} resonance at (2340+-40, 340+-40) MeV/ and two 2^{-+} resonances at (2040+-40, 190+-40) MeV and (2300+-40, 270+-40) MeV.
No description provided.
The beam asymmetry, $\Sigma$, was measured at ELSA in the reaction $\vec \gamma p \to \eta p$ using linearly polarised tagged photon beams, produced by coherent bremsstrahlung off a diamond. The crystal was oriented to provide polarised photons in the energy range $E_\gamma = 800$ to 1400 MeV with the maximum polarisation of $P_\gamma = 49$ % obtained at 1305 MeV. Both dominant decay modes of the $\eta$ into two photons and $3\pi^0$ were used to extract the beam asymmetry from the azimuthal modulation of the cross section. The measurements cover the angular range $\Theta_\text{cm}\simeq 50$ -- 150 degrees. Large asymmetries up to 80 % are observed, in agreement with a previous measurement. The eta-MAID model and the Bonn--Gatchina partial wave analysis describe the measurements, but the required partial waves differ significantly.
Photon asymmetry for eta photoproduction at incident photon energy of 850 MeV.
Photon asymmetry for eta photoproduction at incident photon energy of 950 MeV.
Photon asymmetry for eta photoproduction at incident photon energy of 1050 MeV.
Differential and total cross-sections for photoproduction of gamma proton to proton pi0 omega and gamma proton to Delta+ omega were determined from measurements of the CB-ELSA experiment, performed at the electron accelerator ELSA in Bonn. The measurements covered the photon energy range from the production threshold up to 3GeV.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the PI0 angle.
We present data on p ̄ p→3π 0 at nine p̄ momenta from 600 to 1940 MeV/c. This process is dominated by the f 2 (1270) π 0 channel, where we observe I =1 resonances with the following masses and widths: 4 ++ (2260±15), Γ =180±20 MeV, 4 ++ (2005±25), Γ =360±80 MeV, 3 ++ (2310±40), Γ =180 +120 −60 MeV, 3 ++ (2070±20), Γ =170±40 MeV, 2 ++ (2280±30), Γ =280±50 MeV, 2 ++ (2100 +10 −30 ), Γ =360 +40 −100 MeV, 1 ++ (2100±20), Γ =300 +30 −60 MeV, and 1 ++ (2340±40), Γ =230±70 MeV.
No description provided.
Antiproton-proton annihilation into π 0 π 0 η has been studied with incident beam momenta of 0.6 to 1.94 GeV/c. The main aim is to look for resonances formed by p ̄ p and decaying into π 0 π 0 η . Resonances observed are: two 4 ++ resonances with mass and width (M, Γ ) at (2044, 208) MeV and (2320±30, 220±30) MeV; three 2 ++ resonances at (2020±50, 220±70) MeV, (2240±40, 170±50) MeV and (2370±50, 320±50) MeV; two 3 ++ resonances at (2000±40, 250±40) MeV and (2280±30, 210±30) MeV; a 1 ++ resonance at (2340±40, 340±40) MeV; and two 2 −+ resonances at (2040±40, 190±40) MeV and (2300±40, 270±40) MeV.
No description provided.
Quasi-free photoproduction of eta-mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta-mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasi-free n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta-production off the neutron shows a pronounced bump-like structure at W=1.68 GeV (E_g ~ 1 GeV), which is absent for the proton.
Measured value of the quasi-free eta cross section off protons and neutrons as a function of incident photon energy.
Ratio of the measured quasi-free neutron to proton cross sections as a function of incident photon energy.
Measured angular distribution for an incident photon energy of 0.700 GeV.
Total and differential cross sections for $\eta$ and $\eta ^\prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $\eta$ mesons are detected in their two neutral decay modes, $\eta\to\gamma\gamma$ and $\eta\to 3\pi^0\to 6\gamma$, and for the first time, cover the full angular range in $\rm cos \theta_{cm}$ of the $\eta$ meson. These new $\eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $\eta ^\prime$ mesons are observed in their neutral decay to $\pi^0\pi^0\eta\to 6\gamma$ and also extend the coverage in angular range.
Differential cross section for ETA production at incident photon energy 0.850 to 0.900 GeV.
Differential cross section for ETA production at incident photon energy 0.900 to 0.950 GeV.
Differential cross section for ETA production at incident photon energy 0.950 to 1.000 GeV.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector for photon energies between 0.92 and 1.68~GeV at the electron accelerator ELSA. The beam asymmetry~$\Sigma$ has been extracted for $115^\circ < \theta_{\rm c.m.} < 155^\circ$ of the $\pi^0$~meson and for $\theta_{\rm c.m.} < 60^\circ$. The new beam asymmetry data improve the world database for photon energies above 1.5~GeV and, by covering the very forward region, extend previously published data for the same reaction by our collaboration. The angular dependence of $\Sigma$ shows overall good agreement with the SAID parameterization.
Photon beam asymmetry at incident photon energy 0.932 GeV.
Photon beam asymmetry at incident photon energy 0.965 GeV.
Photon beam asymmetry at incident photon energy 0.998 GeV.