It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p+p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semi-classical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p+p collisions at sqrt(s) = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near- and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root-mean-square of the dijet transverse momentum between like- and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(syst) MeV/c.
Values of derived $<z_T>$ and $\hat{x_h}$.
Helicity-averaged $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for combined 2005 and 2006 data.
Difference in $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for like- minus unlike-helicity combinations.
We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central $d$$+$Au and minimum bias $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The charged hadron is measured at midrapidity $|\eta|<0.35$, and the energy is measured at large rapidity ($-3.7<\eta<-3.1$, Au-going direction). An enhanced near-side angular correlation across $|\Delta\eta| >$ 2.75 is observed in $d$$+$Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength $v_2$ for inclusive charged hadrons at midrapidity up to $p_T=4.5$ GeV/$c$. We also present the measurement of $v_2$ for identified $\pi^{\pm}$ and (anti)protons in central $d$$+$Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from $p$$+$Pb at $\sqrt{s_{_{NN}}}=5.02$ TeV. The magnitude of the mass-ordering in $d$$+$Au is found to be smaller than that in $p$$+$Pb collisions, which may indicate smaller radial flow in lower energy $d$$+$Au collisions.
$c_2$ ($p_T$) for track lower-tower pairs from 0-5% $d$+Au collisions and $c_2$ ($p_T$) for pairs in minimum bias $p$+$p$ collisions times the dilution factor.
Measured $v_2$ for midrapidity charged tracks in 0-5% central $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV using the event plane method.
Measured $v_2$ ($p_T$) for identified pions, each charged combined, 0-5% central $d$+Au collisions at RHIC.
We report on charmonium measurements [J/psi(1S), psi'(2S), and chi_c(1P)] in p+p collisions at sqrt(s)=200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi_c in the midrapidity region ($|\eta|<0.35$) is 9.6+/-2.4% and 32+/-9%, respectively. We also report new, higher statistics p_T and rapidity dependencies of the J/psi yield via dielectron decay in the same midrapidity range and at forward rapidity (1.2<|eta|<2.4) via dimuon decay. These results are compared with measurements from other experiments and discussed in the context of current charmonium production models.
Foreground, background counts in the $J/\psi$ mass region, and the signal count.
Foreground, background counts in the $J/\psi$ mass region, and the signal count.
$\psi^{\prime}(J/\psi)$ dielectron yield ratio measured at $|y|$ < 0.35 followed by point-to-point uncorrelated (uncorr.) (statistical and uncorrelated systematic uncertainties) and correlated systematic (corr.) uncertainties.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1<p_T<7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.
Invariant $p_T$ spectra of the $\phi$ meson for different centrality bins in Au+Au, Cu+Cu, $d$+Au, and $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$R_{AA}$ vs. $p_T$ for $\phi$ in central Au+Au collisions, $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ in 10-20% mid-central Au+Au collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $p$+$\bar{p}$ in 60-92% and for $\pi^0$ in 80-92% peripheral Au+Au collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.
$R_{AA}$ vs. $p_T$ for $\phi$ for 30-40% centrality Au+Au and 0-10% centrality Cu+Cu collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ for 40-50% centrality Au+Au and 10-20% centrality Cu+Cu collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.
PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.
Mean number of binary collisions, particpating nucleons from the Au nucleus, number of collisions per participating deuteron nucleon, and trigger bias corrections for the $d$+Au centrality bins.
Transverse momentum in GeV/$c$ for $\pi^{\pm}$.
Transverse momentum in GeV/$c$ for $\pi^{\pm}$.
The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.
Invariant cross section vs. $p_T$ for the production of charged hadrons at mid-rapidity.
Mid-rapidity neutral pion transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
Mid-rapidity charged hadron transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
The PHENIX experiment at RHIC has measured charged hadron yields at mid-rapidity over a wide range of transverse momentum (0.5 < p_T < 10 GeV/c) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data are compared to pi^zero measurements from the same experiment. For both charged hadrons and neutral pions, the yields per nucleon-nucleon collision are significantly suppressed in central compared to peripheral and nucleon-nucleon collisions. The suppression sets in gradually and increases with increasing centrality of the collisions. Above 4-5 GeV/c in p_T, a constant and almost identical suppression of charged hadrons and pi^zeroes is observed. The p_T spectra are compared to published spectra from Au+Au at sqrt(s_NN)=130 in terms of x_t scaling. Central and peripheral pi^zero as well as peripheral charged spectra exhibit the same x_t scaling as observed in p+p data.
$p_T$ spectra of charged hadrons for minimum bias collisions along with spectra for 9 centrality classes derived from the pseudo-rapidity region $|\eta|$ < 0.18. Stat. stands for statistical error, syst. stands for the systematic errors and occ. stands for occupancy error.
$p_T$ spectra of charged hadrons for minimum bias collisions along with spectra for 9 centrality classes derived from the pseudo-rapidity region $|\eta|$ < 0.18. Stat. stands for statistical error, syst. stands for the systematic errors and occ. stands for occupancy error.
$p_T$ spectra of charged hadrons for minimum bias collisions along with spectra for 9 centrality classes derived from the pseudo-rapidity region $|\eta|$ < 0.18. Stat. stands for statistical error, syst. stands for the systematic errors and occ. stands for occupancy error.
The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.
Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.
Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.
Direct photon $p_T$ spectra in different centrality bins.
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.
Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.
Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p_T, and eta points to cold nuclear matter effects arising at high parton densities.
$J_{dA}$ versus $x^{frag}_{Au}$ for $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for different centrality classes.
$J_{dA}$ versus $x^{frag}_{Au}$ for $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for different centrality classes.
$J_{dA}$ versus $x^{frag}_{Au}$ for $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for different centrality classes.