We report measurements of two-particle correlations in rapidity space between a p¯ or Λ¯ and an additional p, p¯, Λ, or Λ¯. We find evidence for local conservation of baryon number, and for the first time observe a pronounced anticorrelation between baryons with the same value of baryon number. Such an anticorrelation is expected in fragmentation models where the rapidity order of particles closely reflects their ‘‘color order,’’ as is the case, for example, in recent versions of the Lund string model.
No description provided.
We present a measurement of the photon structure functionF2γ in the reactionee→eeX forQ2 in the range 0.2<Q2<7 GeV2, using 9,200 multihadron events obtained with the TPC/Two-Gamma detector at PEP. The data have been corrected for detector effects using a regularized unfolding procedure and are presented as a function ofx andQ2. The structure function shows scaling in the region 0.3<Q2<1.6 GeV2,x<0.3 and rises for higherQ2. AtQ2=5.1 GeV2 the results are compared with QCD and, within the scheme of Antoniadis and Grunberg, rather conservative bounds for the QCD scale parameter of 133±50<\(\Lambda _{\overline {{\rm M}S} } \)<268±98 MeV are obtained. A study of the final state structure shows that the rise ofF2γ is consistent with being entirely due to the pointlike component of the photon.
No description provided.
No description provided.
No description provided.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
Numerical values supplied by S. Klein.
Extrapolation over full x range using LUND Monte Carlo.
We report a measurement of the inclusive D/D̄ production cross section in 800 GeV/ c proton-proton interactions. The experiment used the high resolution bubble chamber LEBC exposed to an 800 GeV/ c proton beam at the Fermilab MPS. We obtain σ( D/ D ̄ )=59 −15 +22 μ b (statistical errors), having analysed 25% of the total data sample. Comparison with 400 GeV/ c pp dat a obtained with LEBC at CERN shows a D/D̄ cross section increase by a factor of 1.7 −0.5 +0.7 . This is in good agreement with fusion model calculations.
No description provided.
No description provided.
PAGE FROM PREPRINT.
A charge asymmetry has been observed in final-state jets from e+e− annihilation into hadrons at √s =29 GeV. The measured asymmetry is consistent with the prediction of electroweak theory. The product of axial-vector weak coupling constants, averaged over all quark flavors, is determined to be 〈gAegAq〉=-0.34±0.06±0.05.
Measured differential cross section after efficiency and radiative cross sections. THETA is the polar-angle of the thrust axis defined to be the angle between the direction of the incident positron and the thrust axis taken in the direction of the positron jet. Numerical values requested from the authors. Data are normalised to the total expected QED cross section.
We have studied the photoproduction of Jψ mesons on H, Be, Fe, and Pb targets using real photons at a mean energy of 120 GeV. The pT2 spectra were used to separate the coherent diffractive signals from the incoherent signals. Parametrizing the per-nucleus cross sections in terms of power-law dependences, Aα, we find that αcoh=1.40±0.06±0.04 for the coherent diffractive signals and αincoh=0.94±0.02±0.03 for the incoherent signals.
CROSS-SECTIONS ARE RELATIVE TO THAT FOR INCOHERENT J/PSI PRODUCTION OFF BERYLLIUM.
Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).
Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.
The inclusive production of η-mesons in pp collisions at √ s =63GeV and ϑ CM =90° has been measured for p T <1.5GeV/c. The η/π ratio decreases from its previously measured asymptotic value of η/π ∼ 0.5 at high transverse momentum, to η/π ≈0.3 at P T = 750MeV/c and η/π ≈ 0.01 at P T =300MeV/c, in a way that consistent with phase-space considerations, e.g. m T scaling. The η/π ratio, integrated from 0.2–1.5 GeV/ c , is found to be η/π=0.07±0.055.
No description provided.
Angular distributions of high-mass jet pairs (180< m 2 J <350 GeV) have been measured in the UA1 experiment at the CERN pp̄ Collider ( s =630 GeV ) . We show that angular distributions are independent of the subprocess centre-of-mass (CM) energy over this range, and use the data to put constraints on the definition of the Q 2 scale. The distribution for the very high mass jet pairs (240< m 2 J <300 GeV) has also been used to obtain a lower limit on the energy scale Λ c of compositeness of quarks. We find Λ c >415 GeV at 95% confidence level.
No description provided.
No description provided.