Measurement of the Decay of the $\Z^0$ Into Lepton Pairs

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 379-388, 1990.
Inspire Record 283146 DOI 10.17182/hepdata.29723

We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.

2 data tables

Statistical errors only.

Statistical errors only.


A Determination of the Properties of the Neutral Intermediate Vector Boson Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 231 (1989) 509, 1989.
Inspire Record 282041 DOI 10.17182/hepdata.29768

We report the results of first physics runs of the L3 detector at LEP. Based on 2538 hadron events, we determined the mass m z 0 and the width Γ z 0 of the intermediate vector boson Z 0 to be m z 0 =91.132±0.057 GeV (not including the 46 MeV LEP machine energy uncertainty) and Γ z 0 =2.588±0.137 GeV. We also determined Γ invisible =0.567±0.080 GeV, corresponding to 3.42±0.48 number of neutrino flavors. We also measured the muon pair cross section and determined the branching ratio Γ μμ = Γ h =0.056±0.006. The partial width of Z 0 →e + e − is Γ ee =88±9±7 MeV.

1 data table

No description provided.


Measurement of the Mass and Width of the Z0 Particle from Multi - Hadronic Final States Produced in e+ e- Annihilations

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 231 (1989) 539-547, 1989.
Inspire Record 282905 DOI 10.17182/hepdata.29769

First measurements of the mass and width of the Z 0 performed at the newly commissioned LEP Collider by the DELPHI Collaboration are presented. The measuements are derived from the study of multihadronic final states produced in e + e − annihilations at several energies around the Z 0 mass. The values found for the mass and width are M (Z 0 )=91.06±0.09 (stat) ±0.045 (syst.) GeV and Γ (Z 0 )=2.42±0.21 (stat.) GeV respectively, froma three-parameter fit to the line shape. A two-parameter fit in the framework of the standard model yields for the number of light neutrino species N ν =2.4±0.4 (stat.) ±0.5 (syst.).

1 data table

No description provided.


Measurement of the Z0 Mass and Width with the OPAL Detector at LEP

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 231 (1989) 530-538, 1989.
Inspire Record 282821 DOI 10.17182/hepdata.29757

We report an experimental determination of the cross section for e + e − → hadrons from a scan around the Z 0 pole. On the basis of 4350 hadronic events collected over seven energy points between 89.26 GeV and 93.26 GeV we obtain a mass of m z =91.01±0.05±0.05 GeV, and a total decay width of Γ z =2.60±0.13 GeV. In the context of the standard model t these results imply 3.1 ± 0.4 neutrino generations.

1 data table

No description provided.


Determination of the Number of Light Neutrino Species

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 231 (1989) 519-529, 1989.
Inspire Record 282904 DOI 10.17182/hepdata.29758

The cross-section for e + e − → hadrons in the vicinity of the Z boson peak has been measured with the ALEPH detector at the CERN Large Electron Positron collider, LEP. Measurements of the Z mass, M z = (91.174±0.070) GeV, the Z width Γ z =(2.68±0.15) GeV, and of the peak hadronic cross-section, σ had peak =(29.3±1.2) nb, are presented. With the constraints of the standard electroweak model, the number of light neutrino species is found to be N v =3.27±0.30. this results rules out of the possibility of a fourth type of light neutrino at 98% CL.

2 data tables

Selection from TPC tracks.

Selection by calorimeters.


Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Averill, D. ; et al.
Phys.Rev.Lett. 63 (1989) 2173, 1989.
Inspire Record 281818 DOI 10.17182/hepdata.20033

We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.

1 data table

No description provided.


Initial Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 724, 1989.
Inspire Record 280007 DOI 10.17182/hepdata.20034

We have measured the mass of the Z boson to be 91.11±0.23 GeV/c2, and its width to be 1.61−0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species.

1 data table

Data now superceded.


First Measurements of Hadronic Decays of the $Z$ Boson

The MARK-II collaboration Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 1558, 1989.
Inspire Record 282670 DOI 10.17182/hepdata.20044

We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.

5 data tables

Corrected event shape distributions.

Corrected event shape distributions.

Corrected event shape distributions.

More…