Date

d, r, r-prime and p in p p Elastic Scattering from 209-MeV to 515-MeV

Axen, D. ; Felawka, L. ; Jaccard, S. ; et al.
Lett.Nuovo Cim. 20 (1977) 151-156, 1977.
Inspire Record 125649 DOI 10.17182/hepdata.37405

None

5 data tables match query

POLARIZATION PARAMETER P(N000).

POLARIZATION PARAMETER A(00N0).

WOLFENSTEIN PARAMETER D(N0N0).

More…

Proton Proton Elastic Scattering from 150-MeV to 515-MeV

Bugg, D.V. ; Edgington, J.A. ; Amsler, Claude ; et al.
J.Phys.G 4 (1978) 1025, 1978.
Inspire Record 123232 DOI 10.17182/hepdata.38563

The parameters D, R, R' and P for pp elastic scattering have been measured in the centre-of-mass angular range 13 degrees to 58 degrees with an accuracy of about +or-0.02 at 209, 324, 379, 425 and 515 MeV. These results are incorporated with earlier data into a phase-shift analysis. Phase-shifts are generally in agreement with the theoretical predictions of the Paris group, although the F-wave spin-orbit combination is rather stronger than predicted. The fitted value for the pi 0pp coupling constant in g02=14.06+or-0.65.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Real to Imaginary Ratio of the $\bar{p} p$ Forward Elastic Scattering Amplitude at 550-{MeV}/$c$, 757-{MeV}/$c$ and 1077-{MeV}/$c$

Schiavon, P. ; Birsa, R. ; Bos, K. ; et al.
Nucl.Phys.A 505 (1989) 595-609, 1989.
Inspire Record 277295 DOI 10.17182/hepdata.36894

The ratio of the real to the imaginary part of the pp forward elastic-scattering amplitude ϱ has been measured at 550, 757, and 1077 MeV/ c at LEAR, using the Coulomb-nuclear interference method. The results obtained for ρ and b , the nuclear slope, are ϱ = 0.084 ± 0.051 and b = 20.9 ± 2.1 (GeV/ c ) −2 at 550 MeV/ c , ϱ = 0.102 ± 0.043 and b = 18.0 ± 0.5 (GeV/ c ) −2 = at 757 MeV/ c , and ϱ = 0.059 ± 0.035 and b = 15.2 ± 0.3 (GeV/ c ) −2 at 1077 MeV/ c .

4 data tables match query

Error on SLOPE is statistical only.

Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.

Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.

More…

Polarization parameter in k+- p and anti-p p elastic scattering at 10 and 14 gev/c

Borghini, M. ; Dick, L. ; Olivier, J.C. ; et al.
Phys.Lett.B 36 (1971) 497-500, 1971.
Inspire Record 69141 DOI 10.17182/hepdata.37261

Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Anti-proton - Proton Small Angle Elastic Scattering at Low Momentum

Linssen, L. ; Beard, C.I. ; Birsa, R. ; et al.
Nucl.Phys.A 469 (1987) 726, 1987.
Inspire Record 245092 DOI 10.17182/hepdata.37014

Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.

3 data tables match query

The corrected cross section is the measured divided by the average folding correction given in the paper.

The corrected cross section is the measured divided by the average folding Correction given in the paper.

Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.


Measurements of the anti-proton - proton elastic cross-section in the beam momentum range between 180-MeV/c and 600-MeV/c

Brückner, W. ; Cujec, B. ; Döbbeling, H. ; et al.
Z.Phys.A 339 (1991) 367-377, 1991.
Inspire Record 314887 DOI 10.17182/hepdata.16589

The differential cross section for antiproton-proton elastic scattering has been measured for the beam momenta between 180 and 600 MeV/c. The real-to-imaginary ratio of the forward elastic scattering amplitude is derived from the Coulomb-nuclear interference. The ratio is found to be close to zero between 180 and 500 MeV/c with a minimum ofρ=−0.14 at 260 MeV/c. This result is contrary to model predictions. The phase shifts for thes-,p- andd-waves are extracted. The partial wave compositions of the elastic and inelastic cross sections have been determined. A large contribution of thep-wave is identified in the antiproton-proton interactions at small momenta.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

First Measurement of the Real Part of a $p p$ Double Spin Flip Amplitude

Gazzaly, M.M. ; Pauletta, G. ; Tanaka, N. ; et al.
Phys.Rev.Lett. 58 (1987) 1084, 1987.
Inspire Record 247888 DOI 10.17182/hepdata.20181

The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE P P ELASTIC SCATTERING SPIN PARAMETER C(LL) AT 11.75-GEV/C FOR THETA (C.M.) = 48-DEGREES - 90-DEGREES

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 52 (1984) 808-810, 1984.
Inspire Record 202204 DOI 10.17182/hepdata.20434

Results are presented of a measurement of the proton-proton elastic-scattering spin parameter CLL=(L,L;0,0) at 11.75 GeV/c and θc.m.=48°−90°. The value of CLL is nearly constant and is approximately -0.16 in this angular region. This behavior is consistent with only one of the many models proposed describing the interaction via the hard scattering of two quarks.

2 data tables match query

NUMERICAL VALUES OF DATA SUPPLIED BY H. SPINKA.

ESTIMATED VALUE OF CSS (90 DEG) DETERMINED FROM PRESENT DATA ON CLL AND DATA OF CRABB ET AL., (PRL 41, 1257) AND CROSBIE ET AL., (PR D23, 600) FOR CNN VIA THE RELATION CNN-CSS-CLL=1 (90 DEG). ERROR CONTAINS BOTH SYSTEMAT8ICS AND STATISTICS.


Measurements of Spin Spin Correlation Parameters Up to 2.5-{GeV}/$c$ Incident Momentum for a Decisive Clarification of the Structure Observed in the $p p$ System

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 51 (1983) 1411, 1983.
Inspire Record 191101 DOI 10.17182/hepdata.20512

Recent data are presented on spin-spin correlation parameters CLL=(L,L;0,0) and CSL=(S,L;0,0) at forward angles from 1.18 to 2.47 GeV/c incident momenta in proton-proton elastic scattering. Values for ΔσL (inelastic) are derived and are shown to disagree with predictions of theoretical models attempting to describe p−p scattering without dibaryon resonances. Finally, the CLL and CSL data discriminate among various phase-shift solutions, and will lead to a clarification of the p−p phase shifts.

2 data tables match query

No description provided.

No description provided.


STRUCTURE OBSERVED IN THE SPIN SPIN CORRELATION PARAMETER C(LL) = (L, L, 0, 0) IN P P ELASTIC SCATTERING AROUND THETA (C.M.) = 90-DEGREES IN THE REGION P(LAB) = 2.5-GEV/C - 5.0-GEV/C

Auer, I.P. ; Chang-Fang, C. ; Colton, E. ; et al.
Phys.Rev.Lett. 48 (1982) 1150-1152, 1982.
Inspire Record 180637 DOI 10.17182/hepdata.20626

The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.

1 data table match query

NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.