Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

29 data tables

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

4 data tables

The measured differential cross section for SIGMA- production.

The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.

The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.

More…

Measurement of inclusive rho0, f0(980), f2(1270), K*2(1430)0 and f'2(1525) production in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 364-382, 1999.
Inspire Record 482816 DOI 10.17182/hepdata.49345

DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.

2 data tables

Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.

Integrated rates extrapolated to the full x range.


Inclusive measurements of the K+- and p / anti-p production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 444 (1995) 3-26, 1995.
Inspire Record 394052 DOI 10.17182/hepdata.47973

This analysis, based on a sample of 170000 hadronic Z0 decays, provides a measurement of the K ± and p/ p differential cross sections which is compared to string- and cluster fragmentation models. The total multiplicities for K ± and p/ p per hadronic event were found to be: NK = 2.26 ± 0.18 and N p = 1.07 ± 0.14. The positions ξ * of the maxima of the differential cross sections as a function of ξ = ln(1/ x p ) for K ± and p/ p were determined to be 2.63 ± 0.07 and 2.96 ± 0.16 respectively. A comparison of the ξ * values for various identified particles measured at LEP with the prediction of the Modified Leading Logarithm Approximation with Local Parton Hadron Duality model has been performed. The measured ξ * position as a function of the hadron mass, after corrections due to particle decays, is in agreement with the model calculation.

6 data tables

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.018 < Z < 0.5) using the JETSET prediction.

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.031 < Z < 0.11) using the JETSET prediction.

No description provided.

More…

Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 298 (1993) 236-246, 1993.
Inspire Record 342800 DOI 10.17182/hepdata.29001

A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.

10 data tables

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

More…

Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

9 data tables

Experimental differential Thrust distributions.

Experimental differential Oblateness distributions.

Experimental differential C-parameter distributions.

More…

Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.