We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.
We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN Sp p S collider. We have studied the production of K S 0 , Λ and Λ particles with transverse momenta ( p t ) up to 7 GeV/c and K ± up to 2 GeV/c. The kaon data are compared with a recent QCD prediction and are found to be in good agreement. The < p t > for K S 0 , Λ and Λ is seen to increase as a function of the charged particle multiplicity and is compared with charged particle production.
From a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment and from other published data at the CERN S p p S collider we have estimated the relative production of π ± , π 0 , K ± , K S 0 , Λ, Λ , p and p . We obtain a meson over baryon ratio M B = 6.4 ± 1.1 . From the K S 0 π ± ratio we measure the strangeness suppression factor λ = 0.29 ± 0.02 ± 0.01 which, combining with other available data provides a new world average of 0.29 ± 0.015. Both the K S 0 π ± ratio and the strangeness suppression factor λ as a function of s are investigated, and an extrapolation to the LHC energy is performed.
The inclusive cross section for the production ofKs0 mesons, Λ and\(\bar \Lambda\) particles in proton-proton interactions at\(\sqrt s= 63\) GeV is presented. The produced particles have been detected in the full phase space. Behaviour of the longitudinal and transversal depandences of the cross sections are discussed. The total production cross sections fors0 mesons and Λ particles was determined to\(\sigma _{{\rm K}_S^0 }= (25.5 \pm 1.4)\) mb andσΛ=(7.8±1.2) mb respectively. A strong energy dependence of the production cross sections is observed.
Inclusive production of ϱ0,f, andg0 mesons and ofKs0,K*0 (892), ϕ andK*0(1430)mesons has been measured at
Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.
Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset (L=36/pb) acquired by the ATLAS detector during the 2010 sqrt(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.
This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb^-1 of pp collisions recorded at a center-of-mass energy of sqrt(s)=7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/epsilon fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where epsilon is the monopole reconstruction efficiency. The efficiency epsilon is high and uniform in the fiducial region given by pseudorapidity |eta|<1.37 and transverse kinetic energy 600-700
Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.
We present a measurement of two-particle angular correlations in proton-proton collisions at sqrt(s) = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |eta| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.