Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .
No description provided.
Error contains both experimental and theoretical errors.
An experimental study was made of a ωπ 0 system produced in the charge exchange reaction π − p→ ωπ 0 n at 8.95 GeV/ c . The moment analysis was performed to study the spin-parity of the system in the mass region between 1.04 and 1.88 GeV. A clear peak of b 1 (1235) was observed in the J PC = 1 +− wave. No significant structure was seen in the 1 −− wave. An upper limit is obtained to be at most 1.9 μb for σ ( π − p→X 0 n)Br(X 0 → ωπ 0 ) for X 0 with a width of 130 MeV at 1480 MeV, where C(1480) meson with J PC = 1 −− has been reported in a φπ 0 decay mode.
Upper limit for pi- p --> X0 n (X0 --> omega pi0) with width 130 MeV at 1480 MeV where the C(1480) has been reported with JPC = 1-- in the phi pi0 decay mode.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
T - MOMENTUM TRANSFER FROM BEAM PROTON TO LEADING PROTON.
We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.
No description provided.
No description provided.
The production of the neutralK− (892) resonances by 200 GeVK− andπ− has been studied over the kinematic range 0.0<xf<1.0 andpt2<5.0 GeV2. Longitudinal and transverse momentum distributions are presented. In addition the decay angular distributions inK− fragmentation to\(\bar K^{0*} \) have been investigated.
No description provided.
No description provided.
No description provided.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.
No description provided.
Statistical errors only.
We examine the negative 3π final state produced in association with Δ++(1232) in the reaction γp→Δ++π+π−π− at an incident photon energy of 19.3 GeV. The most prominent enhancement in the 3π spectrum occurs at a mass and with a width consistent with the parameters of the a2(1320). This identification is confirmed by the various angular distributions. The a2 production cross section, corrected for efficiencies and alternate a2 decay modes, is 0.45±0.05 μb.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.