The production of strange baryons ine+e− annihilation has been studied at centre of mass energies of 34.8 GeV and 42.1 GeV, using the TASSO detector at DESY. Inclusive cross-sections have been obtained forΛ0 andΞ− production and an upper limit has been placed upon the production rate of Σ*±(1385). We measure theΛ0 multiplicity per event to be\(\begin{gathered}\hfill \\0.218_{ - 0.011}^{ + 0.011}\pm 0.021 \hfill \\ \end{gathered} \) and\(0.256_{ - 0.029}^{ + 0.030}\pm 0.025\) at\(\sqrt s=34.8\) and 42.1 GeV respectively. The Ξ− multiplicity per event is found to be\(0.014_{ - 0.003}^{ + 0.003}\pm 0.004\) at\(\sqrt s=34.8 GeV\). An investigation has been made of the extent to whichΛ0 are produced in pairs. TheΛ0 cross-section has been studied as a function of event sphericity.
No description provided.
No description provided.
No description provided.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilations has been measured at 34 GeV and 44 G
No description provided.
No description provided.
No description provided.
Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
No description provided.
The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.
Measurements of inclusive transverse-momentum spectra for charged particles produced in proton-antiproton collisions at √2 of 630 and 1800 GeV are presented and compared with data taken at lower energies.
No description provided.
No description provided.
Results of fit to invariant cross section of the form AP0**N/(PT + P0)**N.
The Crystal Ball Collaboration has measured the energy spectrum of electrons from semileptonicB meson decays at thee+e− storage ring DORIS II. Branching ratios and weak mixing angles of the Kobayashi-Maskawa matrix are determined using several models for the hadronic matrix elements. We obtain the branching ratio for semileptonic.B decays to charmed states BR(B→evXc)=(11.7±0.4±1.0)%. Our result for the corresponding Kobayashi-Maskawa matrix element is |Vcb|=0.052±0.006. The model dependence of both results is included in the error. We have not observed semileptonicB decays to non-charmed mesons. Analyzing the measured electron spectrum above 2.4 GeV, where nob→c decays contribute, we find BR(B→evXu)/BR(B→evXc)<6.5% at the 90% confidence level. This corresponds to an upper limit |Vub/Vcb|<0.21.
The errors quoted are statistical only.
The energy dependence of the relative production rate of three-jet events is studied in hadronic e + e − annihilation events at center of mass energies between 22 and 46.7 GeV. Three-jet events are defined by a jet finding algorithm which is closely related to the definition of resolvable jets used in O( α s 2 ) perturbative QCD calculations, where the relative production rate of three-jet events is roughly proportional to the size of the strong coupling strength. The production rates of three-jet events in the data decrease significantly with increasing centre of mass energy. The experimental rates, which are independent of fragmentation model calculations, can be directly compared to theoretically calculated jet production rates and are in good agreement with the QCD expectations of a running coupling strength. The hypothesis of an energy independent coupling constant can be excluded with a significance of four standard derivations.
No description provided.
No description provided.
No description provided.
We report the first observation of an orbitally excited baryon, the Λ(1520), in quark and gluon fragmentation. The production rate is found to be (1.15±0.21±0.16)×10 −2 and (0.80±0.17 −0.13 +0.10 )×10 −2 Λ (1520) hyperons per event in direct ϒ decays and in the continuum, respectively. In contrast to the observed situation for ground state baryons, the production of the Λ(1520) in direct ϒ decays shows little or no enhancement with respect to continuum production.
Full X range uses extrapolation from fit to dsig/dz distribution.
No description provided.
UPSI(1S) DECAYS.
We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.
PHI meson cross section on the continuum.
Differential particle density for PHI mesons in decays of upsilon(1S) and upsilon(2S).
No description provided.
Using the ARGUS detector at the DORIS II storage ring, we have observed the charmed baryons Σ c ++ and Σ c 0 , through their decays to Λ c + π ± . We have measured the mean Σ c −Λ c + mass difference as 167.6±0.3±1.6 MeV/ c 2 . The isospin mass splitting between the Σ c ++ and the Σ c 0 was found to be 1.2±0.7±0.3 MeV/ c 2 . The rate of Λ c + production from Σ c decays was found to be (36±12±11)% of the total rate of Λ c + production. The Σ c χ p spectrum was observed to be similar to that of the Λ c + , with a Peterson function parameter ϵ of 0.29±0.06.
DATA FROM UPSI(4S) WAS EXCLUDED.