Measurements of the differential cross section for the inelastic scattering of 12-GeV/c muons on protons are reported. These measurements cover a kinematic range of |q2| (the square of the four-momentum transferred from the lepton) up to 4.0 (GeV/c)2 and of muon energy losses (ν) up to 9.0 GeV. Only the scattered muon is observed in an optical spark-chamber apparatus. The data are compared with electron-proton inelastic scattering, and analyzed in terms of possible lepton form factors and anomalous interactions. μ−p inelastic scattering is found to exhibit the same mild |q2| behavior as does e−p inelastic scattering. No experimentally significant deviation from the predictions of muon-electron universality has been found. If the ratio of muon to electron inelastic cross sections is parametrized by the form (1.0+|q2|ΛD2)−2, we find with 97.7% confidence that ΛD>4.1 GeV/c. The muon-proton cross sections on the average are slightly smaller than the electron-proton cross sections. This observation is not experimentally significant because such a difference might be caused by systematic errors, but this observation is used to speculate as to the most fruitful direction for future experiments.
No description provided.
No description provided.
No description provided.
The inelastic scattering of muons has been measured using positive muons of momentum 10 GeV/c incident upon a liquid-hydrogen target. We present values of the differential cross section and of the virtual photon-photon absorption cross section for |q| in the range 0.05 to 1.2 (GeV/c)2 and for equivalent photon laboratory energies of 0.6 to 6.5 GeV.
No description provided.
No description provided.
No description provided.